GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III (NEW) EXAMINATION - WINTER 2023

Subject Code:3130906 Date:16-01-2024

Subject Name: Electrical Circuit Analysis

Time:10:30 AM TO 01:00 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.
- Q.1 (a) Explain Norton's theorem. 03
 (b) Develop Step by step solution to solve electrical networks by using Superposition Theorem.
 - (c) Determine the load current of figure 1 given below using Thevenin's Theorem.

Q.2 (a) Explain in brief about the ideal transformer.
(b) Derive the step response to R-L series circuit using Laplace Transformation method.
(c) For the circuit shown in Figure 2 switch K is changed from position a to b at t=0, steady state condition having been reached before switching. Find the values of i; di/dt, d²i/dt² at t = 0+.

(c) In the circuit shown in Figure 3 determine the mesh currents i_1, i_2, i_3 07

Q.3

(c)

What is the importance of initial conditions in network analysis? **(b)** Discuss why. 04 The current in inductor cannot change instantaneously. (i) (ii) voltage across capacitor cannot a instantaneously. Prove Initial and Final Value theorems. **07** (c) OR 0.3 Explain the importance of Dot convention in coupled circuit with 03 (a) suitable example. What are the properties of Laplace transformation? Explain in detail. 04 **(b)** What is time constant? What is its significance? Illustrate through an 07 (c) example. Specify the term (i) RMS values (ii) Apparent power (iii) Complex **Q.4** 03 (a) Convert the capacitance C (passive element) to Laplace domain using **(b)** 04 Laplace transformation. Define poles and zeros of network function. Explain significance of (c) 07 poles and zeros in different network functions. OR **Q.4** (a) Explain characteristics of unit ramp function. 03 Explain time constant in case of series R-L and series R-C circuit. 04 **(b)**

Find the value of voltage across R3 resistance of figure 4 using Nodal

Explain the initial condition in different passive electrical elements.

07

03

Q.5	(a) (b) (c)	What is the condition of symmetry of all different two port parameters? Generalize relationship of h-parameters to y-parameters. Obtain ABCD parameters in terms of Z-parameters for a two-port network.	03 04 07
Q.5	(a)	OR Define H-parameter of a two-port network.	03
	(b)	Find out reciprocity condition for h-Parameters.	03
	(c)	Determine Y-parameters of the circuit shown in figure 5.	07
		T. I.	

