GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III EXAMINATION - SUMMER 2025

Subject Code:3130906 Subject Name: Electrical Circuit Analysis Time:02:30 PM TO 05:00 PM Instructions: Total Mark			5-2025	
			ks:70	
	1. 2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Simple and non-programmable scientific calculators are allowed.		
			MARKS	
Q.1	(a) (b) (c)	State and explain Superposition theorem for analysis of electrical circuits. State and explain Thevenin's theorem for analysis of electrical circuits. In the circuit of fig. 1, determine the value of R_L for which the power dissipated in R_L will become maximum. Also find the value of P_{max} .	03 04 07	
Q.2	(a)	Define Z-parameters for a two port network and draw equivalent circuit of the network in terms of Z-parameters.	03	
	(b) (c)	Derive Y-parameters as functions of Z-parameters. In the circuit shown in fig. 2, use mesh analysis to determine the current through 10Ω resistance.	04 07	
		OR		
	(c)	Calculate Z-parameters for the two port network shown in fig. 3.	07	
Q.3	(a)	Give reasons for the following. (i) The current through an inductor cannot change instantaneously (ii) The voltage across a capacitor cannot change instantaneously	03	
	(b)	In the circuit shown in fig. 4, steady state is achieved with the switch S open. Now, the switch closes at time $t = 0$. Determine the values of <i>i</i> , di/dt and d^2i/dt^2 at time $t = 0+$.	04	
	(c)	In the circuit shown in fig. 5, the switch closes at time $t = 0$. Solve the circuit and find the value of capacitor voltage at time $t = 5$ second. Assume that the capacitor is initially uncharged.	07	
		OR		
Q.3	(a)	Two mutually coupled inductors are connected in series as shown in fig. 6. The inductors have self-inductances $L_1 = 3$ H and $L_2 = 5$ H respectively and a mutual inductance $M = 2$ H. If the polarity markings are as shown by dots on the diagram, find equivalent inductance of the series connection.	03	
	(b)	Define and explain the term 'Time Constant' with reference to (i) R-L circuit. (ii) R-C circuit	04	
	(c)	A series R-L-C circuit with $R = 9 \Omega$, $L = 1 H$ and $C = 0.05 F$ is energized by a source of constant d.c. voltage $V = 20 V$ by closing a switch at time $t = 0$. Assuming that the capacitor is initially uncharged, find particular solution for current $i(t)$ through the circuit.	07	
Q.4	(a)	Derive Laplace transform of the function $f(t) = \frac{di}{dt}$	03	
	(b)	Derive step response of a series R-C circuit using Laplace transform.	04	

Using Laplace transformation, solve the following differential equation.

$$\frac{d^2i}{dt^2} + 2\frac{di}{dt} + 5i = 4e^{-t}$$

It is given that i(0 +) = 3 and $\frac{di}{dt}(0 +) = -3$.

- **Q.4** (a) Draw transform networks of the following elements.
 - 03

07

- (i) Inductor with initial current $i_L(0-)$
- (ii) Capacitor with initial voltage $v_C(0-)$
- **(b)** Explain the difference between Zero Radian frequency and Zero Neper **04** frequency.
- For the LC network shown in fig. 7, determine the transform impedance Z(s)(c) 07 and plot poles and zeros of this network function.
- **Q.5** (a) Explain the following term in relation to single phase a.c. circuits. (1) RMS 03 Value (2) Active Power (3) Power Factor
 - In the circuit shown in fig. 8, an unknown impedance of Z Ω is connected **(b)** 04 in series with a $(5 + i8) \Omega$ coil. If $I = 2.5 \angle -150 A$, find value of Z.
 - A Δ -connected load having $Z_{RY} = j\mathbf{10} \Omega$, $Z_{YB} = \mathbf{10} \angle \mathbf{0}^{\circ} \Omega$ and $Z_{BR} = \mathbf{10} \angle \mathbf{0}^{\circ} \Omega$ (c) **07** $-j10 \Omega$ is being supplied from a balanced 100 V, 50 Hz, 3-phase supply. Determine (i) Phase Currents and (ii) Line Currents

OR

- **Q.5** Discuss Resonance in series R-L-C circuits. 03 (a)
 - In the circuit shown in fig. 9, find the current drawn from the source. **(b)** 04
 - In the circuit of fig 10, if current $I = 5 \angle 60^{\circ}$ A, find **Z**. **07 (c)**
