GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III (NEW) EXAMINATION - SUMMER 2024

Subject Code:3130507 Date:29-06-2024 **Subject Name: Chemical Engineering Thermodynamics I** Time:10:30 AM TO 01:00 PM **Total Marks:70 Instructions:** 1. Attempt all questions. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. 4. Simple and non-programmable scientific calculators are allowed. **MARKS Q.1** (a) Define equilibrium and state Phase rule 03 (b) Explain (i) System and Surroundings (ii) Macroscopic and Microscopic 04 aspect Derive the first law of thermodynamics for close system (c) 07 **O.2** (a) Show that $C_P - C_V = R$ for an ideal gas 03 **(b)** Write a note on various statements of the second law of thermodynamics 04 **07** A steel casting weighing 35 kg at a temperature 725K is quenched in 150 kg oil at 275K. If there are no heat losses, Calculate the change in entropy. The specific heat (C_P) of steel is 0.88 kJ/kg K and that of oil is 2.5 kJ/kg K. OR For an ideal gas with constant heat capacities, undergoing a reversible 07 adiabatic (and therefore isentropic) process, prove that: $\frac{T_2}{T_1} = \left(\frac{P_2}{P_1}\right)^{\frac{\gamma - 1}{\gamma}}$ **O.3** (a) Explain Hess law of heat summation 03 A system consisting of a gas confined in a cylinder undergoes following 04 series of processes before it is brought back to initial conditions. Step1: A constant pressure process when it receives 500J of work and gives up 200J of heat. Step2: A constant volume process when it receives 100J of heat. Step3: An adiabatic process. Determine the change in internal energy ΔU during each step and work done during adiabatic process. Calculate the compressibility factor and molar volume of methanol 07 vapour at 500K and 10bar. Using virial equation truncated up-to the third virial coefficient? $B = -2.19 \times 10^{-4} \text{ m}^3/\text{mol}, C -1.73 \times 10^{-8} \text{ m}^6/\text{mol}^2.$

Q.3 (a) Write a note on Third law of thermodynamics

(b) Explain the operation of heat pump.

03 04 07

03

03

03

(c) For the following reaction,

$$CO_2 + 4H_2 \longrightarrow 2H_2O + CH_4$$

The standard heat of reaction at 298 K is -164.987 kJ.

The constants in the heat capacity (J/mol K) are as below;

	α	β× 10 ³	γ× 10 ⁶
CO_2	26.75	42.26	-14.25
H_2	26.88	4.35	-0.33
H_2O	29.16	14.49	-2.02
CH ₄	13.41	77.03	-18.74

Calculate the standard heat of reaction at 773K. Use $C_p = \alpha + \beta T + \gamma T^2$

- **Q.4** (a) A heat engine operates between a heat source at 700 K and a heat sink at 300 K. What is the maximum efficiency of the engine?
 - (b) Enlist various liquefaction processes and explain any one process used in the process industry
 - (c) Show that in a 2-stage reciprocating compressor, the min. total work results when the pressure ratios in each stage are equal and are given by the square root of the over-all pressure ratio

OR

- Q.4 (a) Write Short note on "Ejectors".
 - (b) What is an equation of state? Give the expression for any three equations of state
 - (c) Explain with a schematic diagram the working of an absorption refrigeration system
- Q.5 (a) Discuss about Pitzer's modification to law of corresponding states? 03
 - (b) List the properties affecting the choice of a refrigerant? 04
 - (c) Explain the operation of heat pump. 07

OR

- **Q.5** (a) Draw and explain the mnemonic diagram for the thermodynamics property relations.
 - (b) List all Maxwell relations 04
 - (c) Show that in multistage compression for minimum work, the inter-stage pressure is the geometric mean of the initial and final pressures
