S	Seat N	No.: Enrolment No	-
, ,	Subj Time	GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-III (NEW) EXAMINATION – WINTER 2023 ect Code:3130502 Date:12-01-2024 ect Name:Fluid Flow Operations e:10:30 AM TO 01:00 PM Total Marks:70 ections: 1. Attempt all questions.	
		 Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Simple and non-programmable scientific calculators are allowed. 	
		4. Simple and non-programmable scientific calculators are anowed.	MARKS
Q.1	(a)	Classify the fluids based on the externally applied temperature and pressure with suitable examples.	03
	(b)	Write a short note on laminar and turbulent flow.	04
	(c)	A centrifuge bowl 250-mm ID (internal diameter) is turning at 4000 rad/min. It contains a layer of chlorobenzene 50-mm thick. The density of the chlorobenzene is 1109 kg/m³ and the pressure at the liquid surface is atmospheric, what gauge pressure is exerted on the wall of the centrifuge bowl?	07
Q.2	(a)	Discuss the importance of average velocity and derive equation for the same.	03
	(b)	Derive equation for kinetic energy correction factor of a unit mass of fluid flowing at the same velocity.	04
	(c)	The flow has the following conditions in an air pipeline. At point 1, temperature = 298 K, pressure = 1.8 bar, velocity of fluid through pipeline = 15 m/s, pipeline internal diameter = 50-mm and density of air = 2.1 kg/m 3 . At point 2, temperature = 298 K, pressure = 1.3 bar and pipeline internal diameter = 75-mm. Estimate the mass flow rate and velocity of air at point 2. OR	07
	(c)	A pipeline 300-m long has a slope of 1 in 100 and tapers from 1.2-m ID at higher end to 0.6-m ID at lower end. The quantity of water flowing through the pipe is 90 lit/s. If the pressure at higher end is 68.67 kPa, find the pressure at the lower end. Neglect the frictional losses.	07

Q.3 (a) Define friction factor and establish the relation between skin friction parameters.

(b)

and 0.0008 Pa s respectively.

Water is flowing through a 25-mm pipe at the rate of 1 kg/s. Calculate the pressure

drop over length of 100 meters. The density and viscosity of water are 1000 kg/m³

03

04

	(c)	Discuss in detail: comparison of devices for transportation of fluids.	07
		OR	
Q.3	(a)	Water is flowing at a velocity of 2.5 m/s through 25-mm ID pipe. Find out friction	03
		factor. The density and viscosity of water are 1000 kg/m³ and 0.0008 Pa s	
		respectively.	
	(b)	Discuss the effect of roughness for flow through pipe.	04
	(c)	Discuss friction factor for flow through channels of noncircular cross section.	07
Q.4	(a)	Write applications of vacuum pumps with suitable examples.	03
	(b)	Explain jet ejector with the help of a neat diagram.	04
	(c)	Develop the equation of flow measurement for venturimeter.	07
		OR	
Q.4	(a)	List the check valves and draw labeled diagram of any one.	03
	(b)	Define (i) priming (ii) cavitation (iii) NPSH (iv) NPSHR	04
	(c)	Sulfuric acid of density 1300 kg/m ³ is flowing through a pipe of 50- mm ID. An	07
		orificemeter of 10-mm diameter is fitted in the pipe. A mercury (sp. gr 13.6)	
		manometer fitted to the system measures the differential pressure as 10-cm.	
		Calculate the mass flow rate of the acid in kg/hr. Assume orifice coefficient as 0.61.	
Q.5	(a)	Define Schedule number & BWG.	03
	(b)	Distinguish between notch and weir.	04
	(c)	Discuss with one example the Rayleigh method applied to dimensional analysis in	07
		fluid flow operation.	
		OR	
Q.5	(a)	Distinguish between area meters and insertion meters.	03
	(b)	Discuss in brief: pipe and tubing	04
	(c)	A centrifugal fan is used to take flue gas at rest and at a pressure of 737 mmHg and	07
		a temperature of 93.3 °C and a discharge it at a pressure of 765 mmHg and a	
		velocity of 45.7 m/s. Calculate the power needed to move 16,990 m ³ /hr of gas using	
		standard condition of 760 mmHg and 0 °C. The efficiency of the fan is 65 percent	
		and the molecular weight of the gas is 31.3.	
