Enrolment No./Seat No

Time:02:30 PM TO 05:00 PM

Instructions:

GUJARAT TECHNOLOGICAL UNIVERSITY

Subject Name: Chemical Engineering Thermodynamics II

BE- SEMESTER-IV (NEW) EXAMINATION – WINTER 2024 Subject Code:3140507 Date:30-11-2024

Total Marks:70

		 Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Simple and non-programmable scientific calculators are allowed. 	
Q-1	(a) (b)	Explain phase rule for Non-reacting system with example. Discuss the applications of Gibbs Duhem equation in solution thermodynamics.	Marks 03 04
	(c)	Define chemical potential. Prove that the alternative definition of chemical potential that $\mu_i = (\partial U/\partial n_i)_{SV,ni}$	07
		$\mu_i = (0070 \ n_i)_{S,V,nj}$	
Q-2	(a) (b) (c)	Write a short note on ideal solutions and Roult's law. Explain the physical significance of partial molar properties. The enthalpy change of mixing for a binary liquid solution at 298 K and 1 bar is given by the equation $\Delta H = x_1x_2(40x_1 + 20x_2)$, Where ΔH is in J/mol and x_1 and x_2 are the mole fraction of components 1 and 2 respectively. The enthalpies of the pure liquids at the same temperature and pressure are 400 and 600 J/mol respectively. Determine numerical values of the partial molar enthalpies at infinite dilution $\overline{H_1}^{\alpha}$ and $\overline{H_2}^{\alpha}$ at 298 K and 1 bar.	03 04 07
	(c)	Define fugacity in gaseous solutions. Show that the fugacity of component in a mixture of ideal gases is equal to the partial pressure of that component in the mixture.	07
Q-3	(a) (b)	Define and explain excess properties. The two suffix-Margules equation is the simplest expression for excess Gibbs free energy that is obeyed by chemically similar materials. $G^E = Ax_1x_2$ Where A is an empirical constant independent of composition. Derive the expressions for the activity coefficients that result from this expression.	03 04
	(c)	Discuss and derive the criteria of chemical reaction equilibrium in brief. OR	07
Q-3	(a)	Calculate the fugacity of liquid water at 303 K and 10 bar if the saturation pressure at 303 K is 4.241 kPa and the specific volume of liquid water at 303 K is 1.004*10 ⁻⁴ m ³ /kg.	03

	(b) (c)	Derive Lewis-Randall Rule. Also state the systems where it is valid. Discuss the phase equilibria in multicomponent heterogeneous system.	04 07
Q-4	(a)	Calculate the equilibrium constant at 298 K of the reaction $N_2O_4(g) \rightarrow 2NO_{2(g)}$ Given that the standard free energies of formation at 298 K are 97540 J/mol for N_2O_4 and 51310 J/mol for NO_2 .	03
	(b)	Discuss and explain the compressibility factor method for determination of fugacity of pure gases.	04
	(c)	In the synthesis of ammonia, stoichiometric amounts of nitrogen and hydrogen are sent to a reactor where the following reaction occurs. $N_2 + 3H_2 \rightarrow 2NH_3$ The equilibrium constant for the reaction at 675 K may be taken equal to $2*10^{-4}$. Determine the percent conversion of nitrogen to ammonia at 675 K and 20 bar.	07
		OR	
Q-4	(a)	Define: (1) Activity (2) fugacity (3) Henry's law	03
ζ.	(b)	Consider a system in which the following reactions occur: $CH_4 + H_2O \rightarrow CO + 3H_2$ (1) $CH_4 + H_2O \rightarrow CO + 3H_2$ (2) Where the numbers (1) and (2) indicate the value of j, the reaction index. If there are present initially 2 mol CH ₄ and 3 mol H ₂ O, determine expressions for the y_i as function of ε_1 and ε_2 .	04
	(c)	Derive the relationship of standard free energy change and equilibrium constant.	07
Q-5	(a) (b) (c)	Draw the minimum boiling azeotrope diagrams. State the two parameter van Laar equations. The activity coefficients in a mixture of components A and B at 313 K are given by	03 04 07
		$RT \ln \gamma_A = b x_B^2$ and $RT \ln \gamma_B = b x_A^2$ At 313 K, A and B form an azerotrope containing 49.4 mol% A at a total pressure of 27 kPa. If the vapor pressure of pure A and pure B are 25 and 24.3 kPa, respectively, calculate the total pressure of the vapor at temperature 313 K in equilibrium with a liquid mixture containing 12.5 mol% A.	
		OR	
Q-5	(a)(b)(c)	Write a short note on Duhem's Theorem. Discuss the equilibrium constant for liquid phase reactions. Discuss the boiling point diagram for a binary system where one of component is more volatile than other component.	03 04 07
