Seat No.:	Enrolment No.
Seal No.:	Enrollient No.

GUJARAT TECHNOLOGICAL UNIVERSITY

Subj	ect (Code:3140507 Examination – whitek 2022	
		Name: Chemical Engineering Thermodynamics II	
	me:10:30 AM TO 01:00 PM Total Ma		rks:70
insti u	1. 2. 3.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Simple and non-programmable scientific calculators are allowed.	
			MARKS
Q.1	(a) (b) (c)	Explain the significance of phase equilibria. Discuss Lewis-Randall rule along with its limitations. Define azeotrope and explain the minimum boiling and maximum boiling azeotropes with suitable examples.	03 04 07
Q.2	(a) (b)	Discuss: ideal solutions and non-ideal solutions. For a closed system consisting two phases in equilibrium, explain Chemical Potential and Phase Equliibria.	03 04
	(c)	Explain in brief about fundamental property relation. Derive Gibbs/Duhem equations relating molar and partial molar properties. OR	07
	(c)	At 300 K and 1 bar ,the volumetric data for a liquid mixture of benzene and cyclohexane are represented by V=109.4 \times 10-6 $-$ 16.8 \times 10-6 x $-$ 2.64 \times 10-6 x2, where x is the mole fraction of benzene and V has the units of m3/mol. Find expressions for the partial molar volumes of benzene and cyclohexane.	07
Q.3	(a)	Discuss about liquid – liquid equilibrium (LLE).	03
	(b)	An equimolar solution of benzene and toluene is totally evaporated at a constant temperature of 363 K. At this temperature, the vapour pressures of benzene & toluene are 135.4 and 54 kPa respectively. What are pressures at the beginning & at the end of the vaporization process?	04
	(c)	Write a short note on flash vaporization. OR	07
Q.3	(a) (b)	Explain gamma-phi formulation of VLE. A mixture of A and B confirms closely to Raoult's law. At 373 K, the vapour pressure of A and B are 106 and 74 kPa respectively. Determine the composition of the vapour and liquid in equilibrium at 173 K and 101.3 kPa.	03 04
	(c)	Write a brief note on retrograde condensation and its application.	07
Q.4	(a)	Define activity and activity co efficient	03
	(b)	Liquid A and B form an azeotrope containing 46.1 mole percent A at 101.3 kPa and 345 K, the vapour pressure of A is 84.8 kPa and that of B is 78.2 kPa. Calculate the Van Laar Constants.	04
	(c)	List out various methods for evaluation of fugacity coefficient of pure component. Discuss any two in detail. OR	07
Q.4	(a)	Define fugacity and fugacity co efficient	03
	(b)	For a binary system, if the activity coefficient for component '1' is $\ln \gamma 1 = \beta x_2^2$, then derive the expression for component '2'.	04

(c) Discuss various methods for checking the consistency of experimental **07** VLE data. (a) Explain the different factors affecting equilibrium conversions. 03 Q.5 **(b)** Discuss various methods to determine equilibrium constant. 04 (c) Using the fundamental properties relation for single phase reaction, **07** show that $\Delta G^0 = -RT lnK$ OR Write a brief note on multi reaction equilibria. Q.5 (a) 03 **(b)** Develop expressions for the mole fractions (y_i) of reacting species as 04 functions of the reaction coordinates for a system initially contains 2mol CH₄ and 3-mol H₂O undergoing the reaction: $CH_4 + H_2O \rightarrow CO + 3H_2....(1)$ $CH_4 + 2H_2O \rightarrow CO_2 + 4H_2....(2)$ Explain effect of temperature, pressure and total stoichiometric number **07** on equilibrium constant.
