GUJARAT TECHNOLOGICAL UNIVERSITY **BE - SEMESTER-IV EXAMINATION - SUMMER 2025** Subject Code:3140507 Date:23-05-2025 Subject Name: Chemical Engineering Thermodynamics II Time: 10:30 AM TO 01:00 PM **Total Marks:70 Instructions:** 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. 4. Simple and non-programmable scientific calculators are allowed. **MARKS** Q.1 (a) Define fugacity, fugacity co efficient, and activity 03 (b) Derive the equation for determination of fugacity of pure gases using any two 04 methods. (c) For a system in which the following reaction occurs, **07** $CH_{4(g)} + H_2O_{(g)} \rightarrow CO_{(g)} + 3H_{2(g)}$ Assume there are present initially 2mol of CH₄, 1mol of H₂O, 0.5mol of CO, and 3.5mol of H₂. Determine an expression for the mole fraction yi as function of ϵe **Q.2** (a) Write a brief note on Ideal solutions 03 (b) Define azeotrope and explain maximum boiling azeotrope with a neat diagram. 04 (c) Estimate activity coefficient of methanol for chloroform (1) / methanol (2) 07 system at 35°C. The vapour pressures of chloroform and methanol at 35°C are 39.54kPa and 27.95kPa respectively, when the mole fraction of methanol in the liquid mixture is 0.4. Margules' parameters are $A_{12} = 0.738$, $A_{21} = 1.868$. (c) The fugacity of component 1 in binary liquid mixture of components 1 and 2 at 07 298 K and 20 bar is given by $\bar{f_1} = 50x_1 - 80x_1^2 + 40x_1^3$ where \bar{f}_1 is in bar and x_1 is the mole fraction of component 1. Determine: (i) The fugacity f_1 of pure component 1 (ii) The fugacity coefficient ϕ_1 (iii) The Henry's law constant K₁ (iv) The activity coefficient Υ_1 . 03 **Q.3** (a) Discuss the criteria of phase equilibrium for a homogeneous closed system. (b) What is partial molar property? Discuss the physical significance and 04 importance of partial molar property. The molar volume of a binary solution at 300 K and 1 bar is given by: 07 $V = 500x_1 + 1000x_2 + x_1x_2(50 x_1 + 40x_2) \text{ cm}^3/\text{mol}$ For the stated temperature and pressure, determine: (i) Expressions for \overline{V}_1 and \overline{V}_2 in terms of x_1 (ii) Numerical values for the partial molar volumes at infinite dilution $\overline{V_1^{\infty}}$ and $\overline{V_2^{\infty}}$ | Q.3 | (a) | What is retrograde condensation and explain its application in chemical industry. | 03 | |-----|------------|---|----| | | (b) | State applications and limitations of Wilson and NRTL equation. | 04 | | | (c) | The vapour pressures of acetone (1) and acetonitrile (2) can be evaluated by the Antoine equations $\ln P_1^S = 14.5463 - \frac{2940.46}{T-35.93}$ $\ln P_2^S = 14.2724 - \frac{2945.47}{T-49.15}$ | 07 | | Q.4 | (a) | Where T is in K and P is in kPa. Assuming that the solutions formed by these are ideal, calculate x1, and y1 at 327 K and 65 kPa Determine the fugacity and fugacity coefficient of steam at 623 K and 1000 kPa using enthalpy and entropy values from steam tables. Assume that steam behaves ideally at 101.3 kPa and 623K, H = 3176 kJ/kg; S = 8.38 kJ/kg K. Data from steam tables: At 1000kPa and 623K, H = 3159 kJ/kg; S = 7.3 kJ/kg K. | 03 | | | (b)
(c) | The Henry's law constant for oxygen in water at 298 K is 4.4*10 4bar. Estimate the solubility of oxygen in water at 298 K for a partial pressure of oxygen at 0.25 bar. Write steps to determine Bubble point temperature using Raoult's Law. | 04 | | | (c) | OR | 07 | | Q.4 | (a) | What do you mean by the 'extent of reaction'? How is it related to the mole fraction of the species in the reaction mixture? | 03 | | | (b) | Discuss any one group contribution method to determine activity coefficients | 04 | | Q.5 | (c) | The water-gas-shift reaction is carried out under the different sets of conditions described below. Calculate the fraction of steam reacted in each case. Assume the mixture behaving as an ideal gas. CO_(g) + H₂O_(g) → CO_{2(g)} + H_{2(g)} (i) The reactants consist of 1mol of water vapour and 1mol of carbon monoxide. The equilibrium constant K= 1 for the reaction at temperature of 1100 K and the pressure of 1 bar. (ii) Same as (i) except that 3 mol of N2 is included in the reactants. (iii) The reactants are 2 mol of CO and 1 mol of H2O; other conditions are the same as in (i). Describe phase rule for reacting systems | 07 | | Q.C | (b) | Explain any one method for checking the consistency of experimental VLE | 03 | | | (c) | data. Explain how the equilibrium constant for liquid reaction is evaluated. | 07 | | | | OR | | | Q.5 | (a)
(b) | Calculate the equilibrium constant at 298K of the reaction $N_2O_{4(g)} \rightarrow 2NO_{2(g)}$ Given that the standard free energies of formation at 298K are 97,540 J/mol for N2O4 and 51,310 J/mol for NO2. Explain effect of temperature and pressure on equilibrium constant. | 03 | | | (c) | Using the fundamental properties relation for single phase reaction, show that $\Delta G0 = - RT lnK$ | 07 | | | | ~~~~~~~~~~~~ | |