GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-IV (NEW) EXAMINATION - WINTER 2024

Subject Code:3140510 Date:22-11-2024
Subject Name:Numerical Methods in Chemical Engineering
Time:02:30 PM TO 05:00 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

Q.1	(a) (b)	Define significant figure, precision and error propagation. Discuss about the pitfalls of Gauss elimination method and techniques for improvement.	Marks 03 04
	(c)	Fit a second-degree polynomial $y = a + bx + cx^2$ using least squares method to the following data:	07
		x 1 2 3 4	
		y 1.7 1.8 2.3 3.2	
Q.2	(a) (b) (c)	Describe intermediate value properties. Suggest a method to plot the variables y and x given in the following equation, so that on curve fitting the data will fall on equation of a straight line. $y = \frac{\alpha x}{1 + x(\alpha - 1)}$ Find root of the equation $x^3 - 2x - 5 = 0$ using secant method correct up to three decimal places. \mathbf{OR} Find a real root of the equation $x^3 - 9x + 1 = 0$ correct up to three decimal places in the interval [2, 3] by the regula falsi method.	03 04 07
Q.3	(a) (b) (c)	Derive formula for Trapezoidal rule for numerical integration. Evaluate the sum $S = \sqrt{3} + \sqrt{5} + \sqrt{7}$ to 4 significant digits and calculate its absolute and relative error. Derive the equation for Newton's forward difference polynomial.	03 04 07
Q.3	(a) (b) (c)	Explain about the system of ill-conditioned equations using appropriate example. Derive formula for Simpson's $1/3$ rule of numerical integration. Fit an exponential curve $y = ae^{bx}$ to the following data using the principle of least squares:	03 04 07

2

63

4

28

6

12

8

5.6

0

150

X

y

Q.4	(a)	Discuss about convergence criteria for the Gauss-Siedel method.	03
	(b)	Explain the algorithm for Gauss-Jordan method.	04
	(c)	Derive the formula of Newton - Raphson method & also prove that Newton -	07
	(-)	Raphson method is quadratically convergent.	
		OR	
Q.4	(a)	Discuss bracketing methods and open methods.	03
•	(b)	Using Newton's backward difference formula, construct an interpolating	04
	` /	polynomial of degree 3 for the data:	
		f(-0.75) = -0.0718125, f(-0.5) = -0.02475, f(-0.25) = 0.3349375, f(0) =	
		1.10100.	
	(c)	Evaluate $\int_0^{0.6} e^{-x^2} dx$ using the trapezoidal rule and Simpson's 1/3 rule, taking h	07
	(-)	- 0	
		= 0.1.	
Q.5	(a)	Establish Newton's backward interpolation formula.	03
	(b)	Explain Milne's predictor-corrector method.	04
	(c)	Use the Taylor series method to calculate y (0.2), given that $dy/dx = 2y + 3e^x$,	07
		y(0) = 1. Taking $h = 0.2$.	
		OR	
Q.5	(a)	Explain the principle of least squares.	03
	(b)	Explain in brief about ordinary differential equation - boundary value problems.	04
	(c)	Applying Euler's method to solve the initial value problem,	07
	` '	$\frac{dy}{dx} = x - \frac{y}{2} \text{ where } y(0) = 1 \text{ over } [0, 3] \text{ using step size } 0.5.$	
		$\frac{-x}{dx} = \frac{x}{2}$ where $y(0) = 1$ over $[0, 3]$ using step size 0.3.	
