Seat No.: Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV(NEW) EXAMINATION - WINTER 2022

Subject Code:3140510 Date:15-12-2022

Subject Name: Numerical Methods in Chemical Engineering

Time:10:30 AM TO 01:00 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

MARKS

Q.1 (a) Describe different types of errors.

03

(b) Fit the straight line that best fits to the following data:

04

X	1	2	3	4	6	8
у	2.4	3	3.6	4	5	6

(c) Fit a second-degree parabola to the following data:

07

Ī	X	0	1	2	3	4
ĺ	У	1	1.8	1.3	2.5	6.3

Q.2 (a) Prepare Forward difference table for the following data:

03

X	0	5	10	15	20	25
У	7	11	14	18	24	32

- (b) Using Newton Raphson method, find the root of $x^4 x 10 = 0$ orrect up to three decimal places.
- (c) Using Secant method, find the root of $x^3 + x^2 3x 3 = 0$ correct up to five decimal places starting from $x_0 = 1$ and $x_1 = 2$

OR

- (c) Find the square root of 10 correct to three decimal places, by using Newton-Raphson iteration formula.
- Q.3 (a) Find the percentage error in computing the parallel resistance R of two resistances R_1 and R_2 if R_1 , R_2 are each in error by 2%.
 - (b) Find A^{-1} if $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$ 04
 - (c) Using Bisection method find the root of the equation $x^3 5x + 3 = 0$, correct up to two decimal places.

OR

- Q.3 (a) Explain the Gauss Jordan method to solve the system of linear equations. 03
 - (b) Solve the following system of equations by Gauss Elimination method: x + 3y + 2z = 5, 2x + 4y 6z = -4, x + 5y + 3z = 10

- (c) Solve the following system of equations by Gauss-Jacobi method: 6x + 2y z = 4, x + 5y + z = 3, 2x + y + 4z = 27
- Q.4 (a) Using Euler's method find y (1.2), given that $\frac{dy}{dx} = x \sqrt{y}$, y(1) = 1, Taking h = 0.1
 - (b) Apply 4th order Runge Kutta Method to compute y for x = 0.5, given that $\frac{dy}{dx} = \sqrt{x + y}$, y(0.4) = 0.41, h = 0.1
 - (c) Use the Taylor series method to find y(0.1), given that $\frac{dy}{dx} = x^2 + y^2$, y(0) = 1. Taking h = 0.1

OR

- **Q.4** (a) Derive formula for Simpson's 1/3 rule of numerical integration. 03
 - (b) Find the isothermal work done on the gas if it is compressed from $v_1 = 04$ 22L to $v_2 = 2L$. Use Trapezoidal rule to find $W = -\int_{v_1}^{v_2} p \ dv$

V(L)	2	7	12	17	22
P(atm)	12.20	3.49	2.049	1.44	1.11

- (c) Evaluate $\int_0^3 \frac{dx}{1+x}$ by using Simpson's 3/8 Rule and hence calculate $\log 2$
- **Q.5** (a) Prove that (1) $\Delta \nabla = (\Delta \nabla)$ (2) $\Delta = E \nabla = \Delta E$
 - (b) Using Newton's divided difference formula, evaluate f(9) from the following data:

X	5	7	11	13	17
f(x)	150	392	1452	2366	5202

(c) Use Lagrange's interpolation formula to find the value of y when x = 4, if the values of x and y are given below:

X	2	3	5	7
y	0.1506	0.3001	0.4517	0.6259

OR

- Q.5 (a) Discuss in brief about boundary value problems.
 - (b) Find Y(2.36) from the following table using Newton's backward **04** interpolation method.

-							
	X	1.6	1.8	2	2.2	2.4	2.6
	V	4.95	6.05	7.39	9.03	11.02	13.46

(c) Use Milne's predictor-corrector method to find y(4.4). Given that $5xy' + y^2 - 2 = 0$, y(4) = 1, y(4.1) = 1.0049, y(4.2) = 1.0097, y(4.3) = 1.0143, with h = 0.1

03