Subject Code:3140510 ## **GUJARAT TECHNOLOGICAL UNIVERSITY** **BE - SEMESTER-IV EXAMINATION - SUMMER 2025** Date:15-05-2025 | - | | Name:Numerical Methods in Chemical Engineering :30 AM TO 01:00 PM Total 1 | Marks:70 | | | |--------|--|---|----------------|--|--| | Instru | 1.
2. | Attempt all questions. Make suitable assumptions wherever necessary. | | | | | | | Figures to the right indicate full marks. Simple and non-programmable scientific calculators are allowed. | MARKS | | | | Q.1 | (a
(l
(d | | 03
04
07 | | | | Q.2 | (a
(l
(d | | 03
04
07 | | | | | (0 | Find the root of the equation $xe^x = \cos x$, using the secant method | 07 | | | | Q.3 | (b) Find x_2 of $x^4 - x = 10$, correct to three decimal places, using the following terms of ter | | | | | | | (| Newton-Raphson method, where $x_0 = 2$.
Solve the following equations using Gauss-Jacobi's method.
27x + 6y - z = 85; $x + y + 54z = 110$; $6x + 15y + 2z = 72OR$ | 07 | | | | Q.3 | (2 | - | 03 | | | | | (Ì | · • | 04 | | | | | (| Fit a curve of the form $y = ae^{bx}$, to the following data: x: 0 1 2 3 y: 1.05 2.10 3.85 8.30 | 07 | | | | Q.4 | (8 | Find the iterative formula for finding \sqrt{N} where is N is real number, using Newton Raphson formula. | 03 | | | | | (l | Explain working procedure of method of least square. | 04 | | | | | ((| E) Find the missing values in the following data: | 07 | | | | Q.4 | (8 | Write down normal equations to fit the straight line $y = a + bx$. | 03 | | | | - | (l | Evaluate (i) $\Delta \tan^{-1} x$, (ii) $\Delta (e^x \log 2x)$ | 04 | | | | | (| e) Find the cubic polynomial which takes the following values: x: 0 1 2 3 | 07 | | | | | 1 | _ | 1 | 1.0 | |----|---|---|---|-----| | y: | 1 | 2 | 1 | 10 | | _ | | | | | Hence evaluate f(4). | Q.5 | (a) | Write an algorithm for Newton's Forward interpolation method. | | | | | | | |-----|------------|---|-----------|--|--|--|--|--| | | (b) | Use the Trapezoidal rule to estimate the integral $\int_0^2 ex^2 dx$ taking | 04 | | | | | | | | | the number 10 intervals. | | | | | | | | | (c) | Solve $y' = x + y$, $y(0) = 1$ by Taylor's series method. Hence | 07 | | | | | | | | | find the values of y at $x = 0.1$ and $x = 0.2$. | | | | | | | | | OR | | | | | | | | | Q.5 | (a) | Write an algorithm for Trapezoidal Rule. | 03 | | | | | | | | (b) | Discuss in brief about boundary problems. | 04 | | | | | | | | (c) | Using Euler's method, find an approximate value of y | 07 | | | | | | | | | corresponding to $x = 1$, given that $dy/dx = x + y$ and $y =$ | | | | | | | | | | 1 when x = 0. | | | | | | | *****