GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV (NEW) EXAMINATION - SUMMER 2024

Subject Code:3140510 Date:20-07-2024

Subject Name: Numerical Methods in Chemical Engineering

Time:10:30 AM TO 01:00 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.
- Q.1 (a) Differentiate between accuracy and precision with appropriate example. 03
 - (b) Find the percentage error in the area of an ellipse where an error of 1% is made in measuring its major and minor axis.
 - (c) Fit a second degree parabola to the following data.

X	0	1	2	3	4
y	1	1.8	1.3	2	6.3

- Q.2 (a) Use Descartes' rule of signs to find the number of positive, negative and imaginary roots of the function: $x^6 x^5 10x + 7 = 0$
 - (b) Find root of the equation $x^3 2x 5 = 0$ using the bisection method correct upto three decimal places.
 - (c) Air at 25 °C and 1 atm flows through a 4 mm diameter tube with an average velocity of 50 m/s. The roughness is e = 0.0015 mm. Density of air at 25 °C and 1 atm is 1.23 kg/m³. Calculate the friction factor using the Colebrook equation

$$\frac{1}{\sqrt{f}} = -2.0\log\{\frac{\frac{e}{D}}{3.7} + \frac{2.51}{Re\sqrt{f}}\}\$$

Determine the pressure drop in 1 m section of the tube using the relation

$$\Delta P = \frac{fLV^2 f}{2D}$$

OR

(c) Solid particles having a diameter of 0.12 mm, shape factor Φ_s =0.88 and a density of 1000 kg/m³ are to be fluidized using air at 2.0 atm and 25°C. The voidage at minimum fluidization is 0.42. The viscosity of air under these conditions is 1.845*10⁻⁵ kg/m.s. The molecular weight of air is 28.97 g/mol. The diameter of the particle is 1.2*10⁻⁴ m. Estimate the minimum fluidization velocity using newton Raphson method.

The Ergun equation for packed bed is given below.

$$\left[\frac{1.75 \rho (1 - e_{mf})}{\Phi_{\rm S} d_p \, e_{mf}^3}\right] v_{mf}^2 + \left[\frac{150 \, \mu (1 - e_{mf})^2}{\Phi_{\rm S}^2 d_p^2 \, e_{mf}^3}\right] v_{mf} - (1 - e_{mf})(\rho_p - \rho) g = 0$$

07

Q.3 Define Eigen values and Eigen vectors. 03 04

Find numerically the largest Eigen value and corresponding Eigen Vector of the following matrix using power method.

$$A = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

(c) Given the values 07

X	5	7	11	13	17
f(x)	150	392	1452	2366	5202

Determine f(9).

OR

Discuss the pitfalls of Gauss - Elimination method and techniques for 0.3 improving solutions.

03

Solve the following system of simultaneous equations by Gauss seidal method 20x + y - 2z = 17, 3x + 20y - z = -18, 2x - 3y + 20z = 25

04

The function y= sinx is tabulated below (c)

07

X	0	$\pi/4$	$\pi/2$
y	0	0.70711	1.0

Using Lagrange's interpolation formula find the value of $\sin(\pi/6)$

03

State the formulas for Trapezoidal Rule, Simpsons 1/3rd rule, Simpsons 3/8th **Q.4** rule.

Solve the following system of equations by Gauss Elimination method:

04

$$2x + y + z = 10$$
$$3x + 2y + 3z = 18$$

$$x + 4y + 9z = 16$$

(c)

07

Given that $y = \ln x$, and											
X	4.0	4.2	4.4	4.6	4.8	5.0	5.2				
У	1.3863	1.4351	1.4816	1.526	1.5686	1.6094	1.6				

Evaluate $\int_4^{5.2} \ln x \ dx$ using simpsons 3/8 rule.

OR

Derive formula for Trapezoidal Rule of numerical integration. 0.4 (a)

03

Apply Gauss Jordan to solve the equations

04

$$10x + y + z = 12$$

$$x + 10y + z = 12$$

$$x + y + 10z = 12$$

Evaluate $\int_0^6 \frac{1}{1+x} dx$ taking h=1 using Simpson 1/3 rule. **(c)**

07

Discuss in brief about initial and boundary value problems. **Q.5** (a)

03 04

(i)
$$\Delta$$
= E-1

(ii)
$$\nabla = 1 - E^{-1}$$

Using Euler's method, find an approximate value of y corresponding to x =(c) 0.1 for the following equation.

07

$$\frac{dy}{dx} = \frac{y - x}{v + x}$$

Take y(0)=1 and h=0.02

OR

04

07

(b) Given that

X	1.0	1.1	1.2	1.3	1.4	1.5	1.6
у	7.989	8.403	8.781	9.129	9.451	9.750	10.031

Find $\frac{dy}{dx}$ at x=1.1

(c) Using Runge Kutta method of fourth order, solve the following at x=0.2 and 0.4. Take y(0)=1

$$\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$$

Seat No.:	Enrolment No.
Deat 110	Lindincii 110.

GUJARAT TECHNOLOGICAL UNIVERSITY BE –SEMESTER -IV (NEW)EXAMINATION- SUMMER 2024

Subject Code:3140510 Date:

Subject Name: Numerical Methods in Chemical Engineering

Time: Total Marks: 70

Instructions:

5. Attempt all questions.

6. Make suitable assumptions wherever necessary.

7. Figures to the right indicate full marks.

			Mar ks	CO	Co gni tiv e Le vel
Q.1	(a)	Differentiate between accuracy and precision with appropriate example.	03	C O 1	R
	(b)	Find the percentage error in the area of an ellipse where an error of 1% is made in measuring its major and minor axis.	04	C O 1	U
	(c)	Fit a second degree parabola to the following data.	07	C O 5	A
Q.2	(a)	Use Descartes' rule of signs to find the number of positive, negative and imaginary roots of the function: $x^6 - x^5 - 10x + 7 = 0$	03	C O 2	U
	(b)	Find root of the equation x^3 - $2x$ - $5 = 0$ using the bisection method correct upto three decimal places.	04	C O 2	U
	(c)	Air at 25 °C and 1 atm flows through a 4 mm diameter tube with an average velocity of 50 m/s. The roughness is e = 0.0015 mm. Density of air at 25 °C and 1 atm is 1.23 kg/m³. Calculate the friction factor using the Colebrook equation $\frac{1}{\sqrt{f}} = -2.0\log\{\frac{\frac{e}{D}}{3.7} + \frac{2.51}{Re\sqrt{f}}\}$ Determine the pressure drop in 1 m section of the tube using the relation $\Delta P = \frac{fLV^2f}{2D}$	07	C O 3	A

	(c)	OR Solid particles having a diameter of 0.12 mm, shape factor $\Phi_s = 0.88$ and a	07	С	A
	(C)	density of 1000 kg/m ³ are to be fluidized using air at 2.0 atm and 25°C. The	07	O	A
				3	
		voidage at minimum fluidization is 0.42. The viscosity of air under these			
		conditions is 1.845*10 ⁻⁵ kg/m.s. The molecular weight of air is 28.97 g/mol.			
		The diameter of the particle is 1.2*10 ⁻⁴ m. Estimate the minimum fluidization			
		velocity using newton Raphson method. The Ergun equation for peaked had is given below.			
		The Ergun equation for packed bed is given below. $1.75 \text{ o}(1-e_{\text{tot}})$			
		$\left[\frac{1.75 \rho(1-e_{mf})}{\Phi_{s} d_{p} e_{mf}^{3}}\right] v_{mf}^{2} + \left[\frac{150 \mu(1-e_{mf})^{2}}{\Phi_{s}^{2} d_{p}^{2} e_{mf}^{3}}\right] v_{mf} - (1-e_{mf})(\rho_{p}-\rho)g = 0$			
Q.3	(a)	Define Eigen values and Eigen vectors.	03	C	R
				3	
	(b)	Find numerically the largest Eigen value and corresponding Eigen Vector of the following matrix using power method. $A = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$	04	C O 3	A
	(c)	Given the values	07	C	U
		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		O 4	
		OR			
Q.3	(a)	Discuss the pitfalls of Gauss - Elimination method and techniques for improving solutions.	03	C O 3	R
	(b)	Solve the following system of simultaneous equations by Gauss seidal method $20x + y - 2z = 17$, $3x + 20y - z = -18$, $2x - 3y + 20z = 25$	04	C O 3	A
	(c)	The function y= sinx is tabulated below	07	С	U
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		O 4	
		Using Lagrange's interpolation formula find the value of $\sin(\pi/6)$			

(b) Solve the following system of equations by Gauss Elimination method: $2x + y + z = 10$ $3x + 2y + 3z = 18$ $x + 4y + 9z = 16$ (c) Given that $y = \ln x$, and $\frac{x}{y} = \frac{4.0}{1.3863} = \frac{4.2}{1.4351} = \frac{4.4}{1.4816} = \frac{4.8}{1.5261} = \frac{5.0}{1.5686} = \frac{5.2}{1.6094} = \frac{5.2}{1.6487}$ Evaluate $\int_4^{5.2} \ln x dx$ using simpsons $3/8$ rule. $\frac{OR}{Q.4}$ (a) Derive formula for Trapezoidal Rule of numerical integration. (b) Apply Gauss Jordan to solve the equations $10x + y + z = 12$ $x + 10y + z =$			T										
	C O 4	03	03	(ı			(a)	Q.4				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	C O 3	04	04	(,	+ y + 2)	2x + 3x + 3	(b)					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	C O	07	07	-	(c) Given that $y = \ln x$, and								
Evaluate $\int_4^{5.2} \ln x dx$ using simpsons 3/8 rule. OR Q.4 (a) Derive formula for Trapezoidal Rule of numerical integration. (b) Apply Gauss Jordan to solve the equations $10x + y + z = 12$ $x + 10y + z = 12$ $x + 10y + z = 12$ $x + y + 10z = 12$ (c) Evaluate $\int_0^6 \frac{1}{1+x} dx$ taking h=1 using Simpson 1/3 rule. O7 Q.5 (a) Discuss in brief about initial and boundary value problems. (b) Prove the following (i) $\Delta = E - 1$ (ii) $\nabla = 1 - E^{-1}$ (c) Using Euler's method, find an approximate value of y corresponding to $x = 0.0$ 0.1 for the following equation. $\frac{dy}{dx} = \frac{y - x}{y + x}$ Take $y(0) = 1$ and $y = 0.02$ OR Q.5 (a) Explain Milne's predictor corrector method O3 (b) Given that $x = 1.0 - 1.1 - 1.2 - 1.3 - 1.4 - 1.5 - 1.6$	4						X						
ORQ.4(a)Derive formula for Trapezoidal Rule of numerical integration.03(b)Apply Gauss Jordan to solve the equations $10x + y + z = 12$ $x + 10y + z = 12$ $x + y + 10z = 12$ 04(c)Evaluate $\int_0^6 \frac{1}{1+x} dx$ taking h=1 using Simpson 1/3 rule.07Q.5(a)Discuss in brief about initial and boundary value problems.03(b)Prove the following (i) $\Delta = E - 1$ (ii) $\nabla = 1 - E^{-1}$ 04(c)Using Euler's method, find an approximate value of y corresponding to $x = 0.1$ for the following equation.07 $\frac{dy}{dx} = \frac{y - x}{y + x}$ Take $y(0) = 1$ and $h = 0.02$ 0RQ.5(a)Explain Milne's predictor corrector method03(b)Given that $x = 1.0 = 1.1 = 1.2 = 1.3 = 1.4 = 1.5 = 1.6 = 1.6$							у						
Q.4(a)Derive formula for Trapezoidal Rule of numerical integration.03(b)Apply Gauss Jordan to solve the equations $10x + y + z = 12$ $x + 10y + z = 12$ $x + y + 10z = 12$ 04(c)Evaluate $\int_0^6 \frac{1}{1+x} dx$ taking h=1 using Simpson 1/3 rule.07Q.5(a)Discuss in brief about initial and boundary value problems.03(b)Prove the following (i) $\Delta = E - 1$ (ii) $\nabla = 1 - E^{-1}$ 04(c)Using Euler's method, find an approximate value of y corresponding to $x = 0.1$ for the following equation.07 $\frac{dy}{dx} = \frac{y - x}{y + x}$ Take $y(0) = 1$ and $h = 0.02$ 0RQ.5(a)Explain Milne's predictor corrector method03					J	lua	Evalu						
$10x + y + z = 12$ $x + 10y + z = 12$ $x + y + 10z = 12$ (c) Evaluate $\int_0^6 \frac{1}{1+x} dx$ taking h=1 using Simpson 1/3 rule. 07 0.5 (a) Discuss in brief about initial and boundary value problems. 03 (b) Prove the following (i) $\Delta = E-1$ (ii) $\nabla = 1-E^{-1}$ (c) Using Euler's method, find an approximate value of y corresponding to $x = 0$ 0.1 for the following equation. $\frac{dy}{dx} = \frac{y-x}{y+x}$ Take y(0)=1 and h=0.02 OR 0.5 (a) Explain Milne's predictor corrector method 03 (b) Given that $x = 1.0 = 1.1 = 1.2 = 1.3 = 1.4 = 1.5 = 1.6$	6 C O 4	03	03	(
Q.5 (a) Discuss in brief about initial and boundary value problems. (b) Prove the following (i) $\Delta = E-1$ (ii) $\nabla = 1-E^{-1}$ (c) Using Euler's method, find an approximate value of y corresponding to $x = 0.1$ for the following equation. $\frac{dy}{dx} = \frac{y-x}{y+x}$ Take $y(0)=1$ and $h=0.02$ OR Q.5 (a) Explain Milne's predictor corrector method (b) Given that $x = 1.0 = 1.1 = 1.2 = 1.3 = 1.4 = 1.5 = 1.6$	C O 3	04	04	(,	+ y 10y	10x + x + 10	(b)					
(b) Prove the following (i) $\Delta = \text{E-1}$ (ii) $\nabla = 1 - \text{E}^{-1}$ (c) Using Euler's method, find an approximate value of y corresponding to $x = 0.1$ for the following equation. $\frac{dy}{dx} = \frac{y - x}{y + x}$ Take $y(0)=1$ and $h=0.02$ OR Q.5 (a) Explain Milne's predictor corrector method (b) Given that $x = 1.0 = 1.1 = 1.2 = 1.3 = 1.4 = 1.5 = 1.6$	' C O 4	07	07	(-	lua	Evalu	(c)					
(i) $\Delta = \text{E-1}$ (ii) $\nabla = 1 - \text{E}^{-1}$ (c) Using Euler's method, find an approximate value of y corresponding to $x = 0.1$ for the following equation. $\frac{dy}{dx} = \frac{y - x}{y + x}$ Take $y(0) = 1$ and $y(0) = 1$	6 C O	03	03	(Discuss in brief about initial and boundary value problems.								
(c) Using Euler's method, find an approximate value of y corresponding to $x = 0.1$ for the following equation. $\frac{dy}{dx} = \frac{y - x}{y + x}$ Take y(0)=1 and h=0.02 OR Q.5 (a) Explain Milne's predictor corrector method 03 (b) Given that $x = 1.0 = 1.1 = 1.2 = 1.3 = 1.4 = 1.5 = 1.6$	C O 4	04	04	(I	Δ=	(i) Δ	(b)					
Q.5 (a) Explain Milne's predictor corrector method 03 (b) Given that 04 x 1.0 1.1 1.2 1.3 1.4 1.5 1.6	C O 6	07	07	(t	ng for	Using 0.1 fc	(c)					
(b) Given that			<u> </u>										
x 1.0 1.1 1.2 1.3 1.4 1.5 1.6	6 C O 6	03	03	(1	olaiı 	Expla	(a)	Q.5				
Find $\frac{dy}{dx}$ at x=1.1	C O 4	04	04	(x y	(b)					

(c)	Using Runge Kutta method of fourth order, solve the following at x=0.2 and	07	С	A
	0.4. Take $y(0)=1$		О	
			6	
	$dy y^2 - x^2$			
	$\frac{y}{dx} = \frac{y}{y^2 + x^2}$			
	ux y + x			
