GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV(NEW) EXAMINATION - SUMMER 2023

Subject Code:3140510

Date:13-07-2023

Subject Name: Numerical Methods in Chemical Engineering

Time:10:30 AM TO 01:00 PM

Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

Marks

Q.1 (a) Explain three sources of arising errors in numerical computation.

03 04

(b) Re-arrange the given equations in diagonally dominant form and solve the new linear system by using Gauss Seidel Method with $X_0 = [0\ 0\ 0]$. Perform only three iterations. Calculate $\varepsilon_a = max[\varepsilon_{a,x}, \varepsilon_{a,y}, \varepsilon_{a,z}]$ only in the last iteration.

$$2x + 15y - 3z = 16$$
, $2x - 3y + 25z = 23$, $12x + 2y + z = 27$.

(c) Fit a second degree polynomial using least square method to the following data

07

X	0	1	2	3	4
y	1	1.8	1.3	2.5	6.3

Q.2 (a) In calculating the area of a rectangle, an error of 3% is made in measuring each of its sides. Find the percentage error in calculating area of the rectangle.

03

(b) Find a root of the function $f(x) = \cos x - xe^x$ using Bisection Method. Perform only four iterations.

04

(c) Find the root of the equation $x^3 - 2x - 5 = 0$ using Secant method correct up to three decimal places.

07

OR

(c) Find a positive root of $x^3 - 4x + 1 = 0$ by the method of false position correct upto three decimal places.

07

Q.3 (a) Explain the Gauss Jordan method to solve the system of linear equations.

03

(b) Fit a curve of the form $y = a e^{bx}$ to the following data:

04

х	1	3	5	7	9
у	115	105	95	85	80

(c) Using Newton-Raphson iterative method, find the real root of $x \log_{10} x = 1.2$ correct to five decimal places.

07

OR

- **Q.3** (a) Determine the largest eigenvalue and the corresponding eigenvector of the matrix $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$.
- 03

04

(b) Fit a curve of the form $y = ax^b$ to the following data:

X	20	16	10	11	14		
у	22	41	120	89	56		

(c) Examine the system of equations 3x+3y+2z=1, x+2y=4, 10y+3z=-2, 2x-3y-z=5 for consistency and then solve it by Gauss Elimination method.

07

Q.4 (a) Construct the divided difference table with the arguments 2, 4, 9, 10 of the function $f(x) = x^3 - 2x$.

03

04

07

(b) Using Newton's forward interpolation formula, find the value of f(1.6).

х	1	1.4	1.8	2.2
f(x)	3.49	4.82	5.96	6.5

(c) Find the polynomial f(x) by using Lagrange's interpolation formula and hence find f(3) for the below data:

x	0	1	2	5
f(x)	2	3	12	147

OR

Q.4 (a) Derive formula for Trapezoidal Rule of numerical integration.

03 04

(b) The residents of a town are given below. Estimate the residents for the year 1830 using Newton's backward interpolation.

Year- x:	1791	1801	1811	1821	1831
residents –y: (in thousand)	46	66	81	93	101

- (c) Using Modified Euler's method, find an approximate value of y when x = 0.6 with h = 0.1 given that $\frac{dy}{dx} = x + 3y$, subject to y(0) = 1.
- Q.5 (a) Find the approximate solution of $\frac{dy}{dx} = x + y$, y(0) = 0 with h = 2 using Euler's Method in five steps.
 - (b) Evaluate $\int_0^3 \frac{1}{1+x} dx$ with n = 6 by using Simpson's 3/8 rule.
 - (c) Using Milne's Predictor-Corrector Methods, find y(4.4) given that $5xy' + y^2 2 = 0$ with y(4) = 1, y(4.1) = 1.0049, y(4.2) = 1.0097, <math>y(4.3) = 1.0143.

OR

- Q.5 (a) Derive formula for Simpson's 1/3 Rule of numerical integration. 03
 (b) Use second order Runge Kutta method to compute y(0.2) given that $\frac{dy}{dx} = \frac{1}{\sqrt{2\pi}} \frac{$
 - $\frac{dy}{dx} = x + \sqrt{y}, \ y(0) = 4 \text{ by taking h=0.1.}$
 - (c) Use the Taylor series method to find y(0.2), given that $\frac{dy}{dx} = 2y + 3e^x$, y(0)=1. Taking h=0.1.
