Subject Name:Discrete Mathematics

Time:10:30 AM TO 01:00 PM

Subject Code:3140708

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV EXAMINATION - SUMMER 2025

Date:17-05-2025

Total Marks:70

Instructions: 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. 4. Simple and non-programmable scientific calculators are allowed. **MARKS Q.1** (a) Prove that: $(A \cap B) \cup (A - B) = A$ and $A \cup (B - A) = A \cup B$ 03 04 (b) Check whether the relation R defined in the $\{1,2,3,4,5,6\}$ as $R = \{(a,b): b = a+2\}$ is reflexive, symmetric or transitive. (I) Define connected graph, Boolean matrix and Euler path. 03 04 (II) If $f(x) = \frac{x+1}{x-1}$ and $g(x) = \frac{x-1}{x+1}$ then find $g \circ f(x)$ and $f \circ g(x)$ 03 **Q.2** (a) Find total number of diagonals in a polygon with n sides. (b) If R be the relation defined in Q_{\perp} -the set of rational numbers by 04 $R = \left\{ \left(\frac{a}{b}, \frac{c}{d} \right) \in Q \times Q : ad = bc \right\}$, then show that R is an equivalence relation. 07 Solve the recurrence relation $S_n - 6S_{n-1} + 9S_{n-2} = 3^{n+1}$ (c) Solve the recurrence relation $S_n + 3nS_{n-1} = 0$, $S_0 = 1$. 07 **03** Q.3 (a) Define complete graph and find order and size of the graph K_{2025} **(b)** Show that the proposition $|(p \rightarrow q) \land (q \rightarrow r)| \rightarrow (p \rightarrow r)$ is 04 tautology. (c) Show that $(R,+,\times)$ is an integral domain, where 07 $R = \left\{ a + b\sqrt{11} \middle| a, b \in I \right\}$ **Q.3** (a) Draw Hasse diagram for $P = \{1, 2, 3, 5, 11, 13, 17, 19, 23\}$ and \leq is a 03 relation such that $x \le y \Leftrightarrow x \mid y$. **(b)** Check whether the relation *R* defined by 04 $R = \{(a,b): a \le b^3, a \& b \text{ are real numbers}\}$ is reflexive, symmetric or transitive. (I) Does there exist a graph with 20 edges and each vertex of 03 degree 3?

		(II) Show that the function $f: R \to R$ such that $f(x) = x^3 + x$ is a bijection.	04
Q.4	(a)	Prove that $(1 \times 2) + (2 \times 3) + \dots + (n \times (n+1)) = \frac{n(n+1)(n+2)}{3}$	03
	(b)	If G is an abelian group with n elements $g_1, g_2,, g_n$ then	04
		show that $(g_1g_2g_n)^2 = e$, where e is the identity element of G	
	(c)	Define Lattice. And consider a poset $({3, 5, 9, 15, 24, 45},)$	07
		, where denotes "divides" is a lattice. Then	
		(i) Draw its Hasse Diagram. (ii) Find its maxima, minima, greatest and least elements when they exist. (iii) Find maxima, minima, greatest and least elements of the set $M = \{3, 9, 15\}$, when they exist.	
Q.4	(a)	OR Find total number of vertices of a full ternary tree with n levels.	03
V1	(4)	The total number of vertices of a ran ternary tree with n levels.	00
	(b)	Find a Node base for the following graph:	04
	(c)	Show that arbitrary intersection of subgroups of a group is a subgroup of a group. Will union of two subgroups be also subgroup of group?	07
Q.5	(a)		03
		-	
	(b)	Show that in a lattice if $a \le b \le c$, then $(D_{a} \circ C) = b \cdot b \cdot c \cdot c \cdot d \cdot b \cdot c \cdot c \cdot d \cdot b \cdot c \cdot c \cdot d \cdot c \cdot c \cdot d \cdot c \cdot c \cdot d \cdot c \cdot c$	04
	(c)	(I) $a \oplus b = b * c$ and (II) $(a*b) \oplus (b*c) = b = (a \oplus b) * (a \oplus c)$ Find transitive closure by Wars hall's Algorithm if $A = \{1, 2, 3, 4, 5\}$	07
	(C)	and $R = \{(1,4), (2,1), (2,5), (2,4), (4,3), (5,3), (3,2)\}$	U7
		and $K = \{(1,4), (2,1), (2,3), (2,4), (4,3), (3,3), (3,2)\}$	
Q.5	(a)	Show that $H = \left\{ \begin{bmatrix} 1 & 0 \\ a & 1 \end{bmatrix} : a \in R \right\}$ is a subgroup of G , where G is	03
		the group of all non-singular lower triangular matrices of order	
	(b)	2×2 over R with usual matrix multiplication.(I) Draw a complete bipartite graph which is not regular.	04
	` /	(II) draw a graph which is regular but not bipartite.	

(c) Define Isomorphic graphs. Check whether the following graphs

are isomorphic?

07

