GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III (NEW) EXAMINATION - WINTER 2023

Subject Code:3131101 Date:16-01-2024

Subject Name: Control Systems

Time:10:30 AM TO 01:00 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

			MARKS
Q.1	(a)	Define: Transfer function, Self loop, Steady-state error.	03
	(b)	Compare block-diagram and signal flow graph method.	04
	(c)	Explain rules for block-diagram reduction technique.	07
Q.2	(a)	Discuss Nyquist criteria for stability.	03
	(b)	Derive the expressions for error constants \mathbf{K}_{p} , \mathbf{K}_{v} and \mathbf{K}_{a} corresponding to step, ramp and parabolic input respectively.	04
	(c)	Reduce the given block-diagram of figure.1 to its simple form and hence obtain	07
		the equivalent transfer function $\frac{C(s)}{R(s)}$.	

Figure.1

OR

- (c) Derive expressions of (i) Rise time, t_r (ii) Peak time, t_p and (ii) Peak overshoot, M_p for a second order control system subjected to a unit step input.
- Q.3 (a) Explain: Frequency response, Root locus, Centroid.
 - (b) Write short note on PID controller. 04
 - (c) Obtain the transfer function $\frac{Y(s)}{X(s)}$ of the signal flow graph shown in figure 2.

Figure.2

Q.3	(a)	What is polar plot?	03
	(b)	Conclude Usefulness of analogues system and explain Force (Torque)- Voltage Analogy.	04
	(c)	Determine the stability of a system having the characteristic equation $s^6+5s^5+11s^4+25s^3+36s^2+30s+36=0$.	07
Q.4	(a)	Derive an expression for the rise time for a 2nd order control system subjected to a unit step input.	03
	(b)	List properties of M-circles.	04
	(c)	Explain rules for construction of root locus.	07
		OR	
Q.4	(a)	• •	03
	(b)	<u> </u>	04
	(c)	The open-loop transfer function of a system is given by	07
		$G(s) H(s) = \frac{K(s+12)}{s^2(s+20)}$	
		Sketch the root loci for the system when K is varied from 0 to ∞ .	
Q.5	(a)	Define: (i) State (ii) State Variable (iii) State Vector.	03
	(b)		04
		1) Gain cross over frequency	
		2) Phase cross over frequency	
		3) Gain Margin	
		4) Phase Margin	
	(c)	Sketch the Nyquist plot for the open-loop transfer function	07
		$G(s) H(s) = \frac{10}{(s+2)(s+4)}$.	
		Determine the stability of the closed-loop system by Nyquist criterion.	
		OR	
Q.5	(a)	Explain standard test signals.	03
•	(b)	1	04
	(c)	Derive the state variable equation $X = AX + BU$ and $Y = CX + DU$. Also draw the	07
		block diagram.	
