GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-III (NEW) EXAMINATION – WINTER 2024

Subject Code: 3131102 Date: 29-11-2024

Subject Name: Digital System Design

Time: 10:30 AM TO 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

			Marks
Q.1	(a)	Convert the decimal number 345.75 to base 4, base 5, and base 9.	03
	(b)	Prove that NOR Gate is a Universal Gate.	04
	(c)	Simplify the following Boolean function, $F(a,b,c,d) = \sum m(1,3,5,7,12,13,14)$ using the Quine-McCluskey Tabular Method.	07
Q.2	(a)	State De Morgan's Laws and provide a proof for them.	03
	(b)	Obtain the truth table of the function: $F = (x + y)(x' + z)$.	04
	(c)	Minimize the logic function $F(A, B, C, D) = \Pi M(0, 1, 2, 5, 8, 9, 10, 13)$ using K-map and draw the logic circuit for the simplified function using NOR gates only. OR	07
	(c)	What is a multiplexer? Explain the working of a 4-to-1 multiplexer with the help of a logic circuit diagram and a truth table.	07
Q.3	(a)	How does the race-around condition occur in JK flip-flops, and what techniques are used to avoid it?	03
	(b)	What are the characteristics of JK flip-flops that differentiate them from SR and D flip-flops?	04
	(c)	Design a half adder and derive the full adder using half adders.	07
		OR	
Q.3	(a)	Distinguish between combinational and sequential logic circuits.	03
	(b)	How can you implement a 4x16 decoder using two 2x4 decoders?	04
	(c)	Explain working of master-slave JK flip-flop with necessary logic diagram, state equation and state diagram.	07
Q.4	(a)	Explain the problem associate of an asynchronous state machine with the help of one example	03
	(b)	Draw logic diagram, graphical symbol and Characteristic table for clocked D flip-flop	04
	(c)	Draw and explain Ring counter	07
		OR	
Q.4	(a)	How many flip-flops are needed to design a counter that counts from 0 to 31? Explain your reasoning.	03
	(b)	What are the different classifications of logic families? Compare their characteristics.	04
	(c)	A combinational logic circuit is defined by the functions:	07
		$F1=\Sigma$ (3, 5, 6, 7) and $F2=\Sigma$ (0, 2, 4, 7). Implement the circuit with a PLA having three inputs, four product terms and two outputs.	

Q.5	(a)	List the steps in VLSI Design flow.	03
	(b)	Describe a Moore machine.	04
	(c)	Design a synchronous BCD counter with JK flip-flops.	07
		OR	
Q.5	(a)	Define the following: 1. Fan-in 2. Noise Margin 3. Propagation Delay	03
	(b)	Describe the operation of a 4-bit parallel-in parallel-out shift register.	04
	(c)	Design a 3-bit synchronous counter using positive edge-triggered D flip-flops.	07
	` /	******	