G . 3.7	T 1
Seat No.:	Enrolment No.
Scat 110	Linoincii 110.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III (NEW) EXAMINATION - WINTER 2023

Subject Code:3131102	Date:18-01-2024
Cabinat Nama Digital Cartana Dagian	

Subject Name:Digital System Design

Time:10:30 AM TO 01:00 PM	Total Marks:70
---------------------------	----------------

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

			Mark
Q.1	(a)	Briefly explain the steps for VLSI design flow.	03
	(b)	Implement Full Adder using 3×8 decoder.	04
	(c)	Design BCD to Excess-3 code converter.	07
Q.2	(a)	Explain NAND SR Latch.	03
	(b)	Reduce the following expression using K-map. Σ (2, 3, 6,7,8,10,11,14)	04
	(c)	Explain dual slope type A/D converter in detail.	07
		OR	
	(c)	Design 2-bit magnitude comparator.	07
Q.3	(a)	Compare synchronous and asynchronous counter.	03
	(b)	Obtain JK flip-flop from SR flip-flop.	04
	(c)	Design a 3-bit synchronous counter using JK flip-flop.	07
Q.3	(a)	OR Compare TTL, ECL, & CMOS logic families.	03
Q.S	(b)	Discuss general state machine architecture.	04
	(c)	Design mod-6 asynchronous counter using T flip-flop.	07
Q.4	(a)	Compare asynchronous and synchronous state machines.	03
	(b)	Explain working of D flip-flop with characteristic table and logic diagram.	04
	(c)	Implement the following using MUX:	07
		a) $F(A,B,C) = \sum (1,3,6)$	
		b) $F(A,B,C) = \pi(2,3,5)$	
		OR	
Q.4	(a)	Define Noise margin, Propagation delay, fan-in and fan-out	03
	(b)	State and prove De Morgan's theorem.	04
	(c)	Describe working principle of Programmable Logic Array with block diagrams.	07
Q.5	(a)	Explain half subtractor with logic circuit.	
	(b)	<u>. </u>	
	(c)	Describe the operation of 4-bit bidirectional shift register with logic diagram. OR	07
Q.5	(a)	Compare sequential and combinational circuits.	03
	(b)	S C C C C C C C C C C C C C C C C C C C	
	(c)	Explain Universal Gates.	07
