GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-IV (NEW) EXAMINATION - WINTER 2024

Subject Code:3141005 Date:21-11-2024

Subject Name: Signal & Systems

Time:02:30 PM TO 05:00 PM

Total Marks:70

Instructions:

- 1. Attempt all questions.
- Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

MARKS

0.1 Compare Energy and power signals with example. (a)

- 03
- Determine whether the following systems are linear or not
- 04

- 1) $\frac{dy(t)}{dt} + 5y(t) + 2 = x(t)$ 2) $5 \cdot \frac{dy(t)}{dt} + y(t) = 5 \cdot x(t)$
- What ROC in z-transform, how ROC change with causality and stability of the system? Mention any four properties of the ztransform.
- 07

(a) Define DFT and IDFT. **Q.2**

03

(b) Prove the following:

04

- 1) $\delta(n) = u(n) u(n-1)$
- 2) $u(n) = \sum_{k=-\infty}^{\infty} \delta(k)$
- Determine the following system described by $y(t) = \sin[x(t+2)]$ is **07** (c) memory less, causal, linear, time-invariance or stable?

OR

- (c) Find weather the following sequences are periodic?, if yes then find 07 out its fundamental period.
 - 1) $X1(n) = \sin\left(\frac{6\pi n}{7}\right)$ 2) $X2(n) = \sin\left(\frac{n}{8}\right)$
- 0.3 (a) List out properties of convolution.

- 03
- State and prove time scaling and time shifting property of Fourier transform
- 04
- Figure shows the periodic rectangular waveform, obtain the Fourier series representation
- 07

OR

Q.3	(a)	Check the BIBO stability for the impulse response of a discrete time system given by $h(n) = \alpha^n u(n)$	03
	(b)	Find the even and odd part of the signal: $x(n) = \alpha^n u(n)$	04
	(c)	Obtain the Fourier transform of the rectangular pulse of the duration	07
	(C)	2 seconds and having amplitude of 10 volts.	07
Q.4	(a)	Explain trigonometric Fourier series.	03
	(b)	Obtain the linear convolution of two sequences:	04
		$x(n) = \{1,2,1,2\}$ and $h(n) = \{1,1,1\}$	
	(c)	Find the Z -transform and sketch the ROC of:	07
		$X(n) = (-1)^n 2^{-n} u(n)$	
0.4	(-)	OR	02
Q.4	(a)	Define: Initial value theorem and final value theorem The impulse response of LTL system h(n)=(1.2.1.1) determine the	03
	(b)	The impulse response of LTI system $h(n)=\{1,2,1,-1\}$, determine the response of system to the input $x(n)=\{1,2,3,1\}$	04
	(c)	Determine Z- transform including ROC of the following:	07
	. ,	$X(n) = (\frac{1}{2})^n \{ u(n) - u(n-10) \}$	
Q.5	(a)	What is aliasing? How can we eliminate Aliasing?	03
	(b)	An analog signal is expressed by the equation	04
		$x(t) = 3 \cos 50\pi t + 10 \sin 300 \pi t - \cos 100 \pi t$. Calculate the Nyquist rate for the signal.	
	(c)	Use partial fraction expansion method to find the inverse z -	07
		transform of the following transfer function	
		$-4+8z^{-1}$	
		$H(z) = \frac{-4 + 8z^{-1}}{1 + 6z^{-1} + 8z^{-2}}$	
		OR	
Q.5	(a)	Define Nyquist sampling theorem.	03
	(b)	Obtain relationship between Laplace and Fourier Transform.	04
	(c)	Find the Discrete Fourier transform of the sequence	07
		$x(n) = \{1,1,0,0\}$ and find IDFT of $Y(k) = \{1,0,1,0\}$	
