Seat	N_0 .	
Deat	110	

Enrol	lment No.	
	HIICHLIND.	

GUJARAT TECHNOLOGICAL UNIVERSITY

		BE - SEMESTER-IV (NEW) EXAMINATION – WINTER 2023	
Subj	ject	Code:3141005 Date:17-01-20	24
Subj	ject	Name:Signal & Systems	
Tim	e:10	:30 AM TO 01:00 PM Total Marks:	70
Instru			
	1.		
	2.	Make suitable assumptions wherever necessary.	
	3.	Figures to the right indicate full marks.	
	4.	Simple and non-programmable scientific calculators are allowed.	
			Marks
Q.1	(a)	Find discrete Convolution of following pairs of signals.	03
_		and $x(n) = \{1,3,5,7\}$ and $h(n) = \{2,4,6,8\}$	
	(b)	Prove Commutative property of Convolution.	04
	(c)	What is ROC with respect to z- transform? What are its properties?	07
Q.2	(a)		03
	(b)	Enlist frequency shifting and time differentiation properties of Fourier transform. Prove any one of them.	04
	(c)	State the sampling theorem. Also explain the reconstruction of a signal from its samples using interpolation.	07
		OR	
	(c)	Determine the Z – Transform & ROC of the following sequence $y(n) = (2)^n y(n)$ (2) $y(n) = (2)^n y(n-1)$	07
		$x(n) = (3)^n u(n) - (2)^n u(-n-1)$	
Q.3	(a)	Explain Scaling property in the z -Domain.	03
V.	(b)		04
	(c)	Determine the convolution sum of two sequences using graphical method	07
	()	$x(n) = \{1, 4, 3, 2\}; h(n) = \{1, 3, 2, 1\}$	
		OR	
Q.3	(a)		03
Q.C	(b)		04
	(c)	Explain following property for the system	07
	. ,	y(t) = 10 x(t) + 5.	
		(i) Linearity (ii) Time-invariance (iii) Causality (iv) Dynamicity	
Q.4	(a)	Explain the trigonometric Fourier series.	03
	(b)		04
	(c)	Calculate the DFT of a sequence $x[n]=\{1,1,0,0\}$ and check the validity of DFT by calculating its IDFT.	07
		OR	
Q.4	(a)		03
	(b)		04
		$h(t) = e^{-3t} u(t) \text{ is stable or not.}$	0 =
	(c)	$x(t) = 1.5 \text{ for } 0 \le t < 1$	07
		$= -1.5 \text{ for } 1 \le t < 2$	
		with fundamental frequency $W_0 = \pi$.	

Q.5	(a)	State and prove a condition for a discrete time L11 system to be stable.	03
	(b)	Find the natural response of the system described by difference equation	04
		y(n) - 1.5 y(n - 1) + 0.5 y(n - 2) = x(n); y(-1) = 1; y(-2) = 0.	
	(c)	Obtain the Fourier Transform of following signals:	07
		$1. x(t) = \cos \omega_0 t$	
		$2. x(t) = \sin \omega_c t \ u(t)$	
		OR	
Q.5	(a)	Explain relation between Fourier transform and z transform using necessary equations.	03
	(b)	Prove that DT LTI system is causal if and only if $h(n) = 0$ for $n < 0$.	04
	(c)	Find whether the given signals are periodic or not? If yes, give its fundamental period.	07
		(i) $x(t) = 3 \sin 200\pi t + 4 \cos 100t$	
		(ii) $x(n) = e^{j(\pi/2)n}$	
