Enrolment No./Seat No	
Enrollient No./Seat No	

GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-IV (NEW) EXAMINATION - WINTER 2024

Subject Code:3141009 Date:27-11-2024

Subject Name: Electromagnetic Theory

Time:02:30 PM TO 05:00 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

		3. Figures to the right indicate full marks.			
		4. Simple and non-programmable scientific calculators are allowed.	Marks		
Q.1	(a)	Explain the difference between scalar and scalar field with example.	03		
	(b)	Explain the position vector and distance vector with example.	04		
	(c)	Explain the various types of charge distributions and its charge density.	07		
Q.2	(a)	Calculate the volume of the sphere of radius R using integration.	03		
	(b)	State and derive the Gauss' law in point form.	04		
	(c)	A charge distribution with spherical symmetry has density $\rho_v = \rho_0(r/R)$, at $0 \le r \le R$ and 0 for $r > R$, Determine E everywhere.	07		
	OR				
	(c)	The flux density $D = r/3 a_r nC/m^2$ is in free space: 1. Find E at 0.4 m	07		
		2. Find the total electric flux leaving the sphere of r=0.4m			
		3. Find the total charge within the sphere of $r = 0.5 \text{ m}$			
Q.3	(a)	Define the Gaussian surface, Discuss satisfying conditions for Gaussian surface.	03		
	(b)	What is streamlines? Explain the equations of streamlines in various coordinate systems.	04		
	(c)	Two uniform line charges of density $\rho_1 = 2$ nC/m lie in the $x = 0$ plane at $y = \pm 4$ m. Find	07		
		E at (4, 0, 12) m.			
0.0	()	OR	0.2		
Q.3	(a)	Why the divergence of curl of any vector is zero? Explain.	03		
	(b)	State and prove divergence theorem. What is the potential at the center of a square with aside a = 4 m ² While charges 2 uC = 2	04		
	(c)	What is the potential at the center of a square with aside $a = 4$ m? While charges 2 μ C, -2 μ C, 4 μ C and -2 μ C are located at its corner.	07		
		μC, 4 μC and -2 μC are located at its corner.			
Q.4	(a)	State and explain Ampere's circuital law.	03		
~··	(b)	Explain the reflection of uniform plane wave at normal incidence.	04		
	(c)	A current filament carrying 20 A in the a _z direction lies along the entire z axis. Find H in	07		
	` ,	rectangular coordinates at P (10,0,4).			
OR					
Q.4	(a)	Write and explain the properties of Curl.	03		
	(b)	State and explain Biot-Savart Law.	04		
	(c)	Given the vector magnetic $A = -r^2/4$ a_z Wb/m. Calculate the total magnetic flux crossing	07		
		the surface $\varphi = \pi/2$, $1 \le r \le 2m$; $0 \le z \le 5m$.			
Q.5	(a)	Write and explain the Maxwell's equations in integral form.	03		
	(b)	Explain the propagation constant and characteristic impedance of transmission line.	04		
	(c)	Write short note on electromagnetic waves in good conductor.	07		
Q.5	(a)	OR Explain poynting vector.	03		
Q.S	(a) (b)	Define and explain wave polarizations.	03 04		
	(c)	What are the applications of transmission line? Write the equations of transmission lines	07		
	(-)	and their solutions in phasor form.	· ·		
