Seat	No:	
Dogu	110	

Enrolment No.

CHIARAT TECHNOLOGICAL LINIVERSITY

		BE - SEMESTER-IV (NEW) EXAMINATION – WINTER 2023	
Subi	ect (Code:3141009 Date:24-01-2024	
_		Name:Electromagnetic Theory	
•	e:10	:30 AM TO 01:00 PM Total Marks:70	
	1. 2. 3.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Simple and non-programmable scientific calculators are allowed.	
Q-1	(a) (b)	Define: Divergence, Gradient and Curl. Transform the following vectors to spherical co-ordinates at the points given: (i) $10a_x$ at $P(x = -3, y = 2, z = 4)$; (ii) $10a_z$ at $M(r = 4, \theta = 110^o, \phi = 120^o)$.	03 04
	(c)	Explain Cylindrical co-ordinate system in detail.	07
Q-2	(a) (b) (c)	State and explain Coulombs law. Find the gradient of scalar fields, (i) $V = e^{-z} \sin 2x \cosh y$; (ii) $U = \rho^2 z \cos 2\phi$. Derive expression of electric field intensity due to a uniform line charge over z-axis having a charge density of ρ_L C/m.	03 04 07
	(c)	Derive expression of electric field intensity due to a surface charge.	07
Q-3	(a) (b)	Write Maxwell's equation in point and integral form. Three infinite uniform sheets of charge are located in free space as follows; $3 nC/m^2$ at $z = -4$, $6 nC/m^2$ at $z = 1$, and $-8 nC/m^2$ at $z = 4$. Find E at the point (a) $A(2, 5, -5)$, (b) $B(4, 2, -3)$, (c) $C(-1, -5, 2)$, (d) $D(-2, 4, 5)$.	03 04
	(c)	State and prove Gauss's Law.	07
Q-3	(a)	OR Define Gaussian surface.	03
Q-3	(a) (b)	Calculate D in rectangular co-ordinates at point $P(2, -3, 6)$ produced by: (a) a point charge $Q_A = 55 \ mC$ at $Q(-2, 3, -6)$; (b) a uniform line charge $\rho_{LB} = 20 \ mC/m$ on the x-axis.	03
	(c)	State and explain Ampere's circuital law.	07
Q-4	(a) (b)	Briefly explain the wave polarization. If we take the zero reference for potential at infinity, find the potential at $(0, 0, 2)$ caused by this charge configuration in free space (a) 12 nC/m on the line $\rho = 2.5 \text{ m}$, $z = 0$; (b) point charge of 18 nC at $(1, 2, -1)$.	03 04
	(c)	State and explain Faraday's Law.	07
0.4	(-)	OR Defines Electric metantical	02
Q-4	(a) (b) (c)	Define: Electric potential. Derive the continuity equation from Maxwell's equation. Write short note on wave propagation in dielectrics.	03 04 07
Q-5	(a) (b)	Define displacement current. What is skin effect?	03 04

Discuss, Plane Wave Propagation in General Directions. **(c)**

Q-5 Define voltage standing wave ratio (VSWR). (a) Discuss applications of transmission lines. **(b)**

> Write short note on Lossless Propagation. **(c)**

07

07

03

04