GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-III (NEW) EXAMINATION – WINTER 2024

Subject Code: 3131307	Date:10-12-2024
Cubicat Names Design of Environmental Hydraulies	

Subject Name: Basics of Environmental Hydraulics

Time: 10:30 AM TO 01:00 PM	Total Marks:70
Instructions:	

- Attempt all questions.
 Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

	4.	Simple and non-programmable scientific calculators are allowed.	Marks
Q.1	(a) (b)	Define & Explain (i) Specific gravity (ii) Capillarity (iii) Mass density Distinguish dynamic viscosity and kinematic viscosity. State their unit.	03 04
	(c)	Derive an expression for Bernoulli's equation and mention the Assumptions.	07
Q.2	(a) (b) (c)	Define the term: Pitot tube. Explain the U-tube Differential manometer. State and prove the Pascal's law.	03 04 07
	(c)	OR Derive an expression for the discharge through an Orifice meter.	07
Q.3	(a) (b)	Define HGL and TEL An oil of kinematic viscosity 0.6 stoke is flowing through a pipe of 31 cm diameter at a rate of 321 liter per second. Find the head loss due to friction for the pipe length of 60 m.	03 04
	(c)	List the minor losses and Derive formula for calculating loss of head due to sudden Contraction.	07
0.3	(a)	OR Define Static Pressure and Dynamic Pressure	03
Q.3	(a) (b)	Define Static Pressure and Dynamic Pressure. Determine the diameter of a pipe of length 2550 m when the rate of flow of water through the pipe is 230 lit/s and the head loss due to friction is 6 m. Take the value of $C = 60$ in Chezy's formula.	03
	(c)	Derive a Darcy Weisbach equation for Head Loss due to friction in pipe.	07
Q.4	(a) (b)	Define Co-efficient of Discharge and Co-efficient of Velocity. A submarine fitted with a pitot tube moves horizontally in sea. Its axis is 12.5 m below the surface of the water. The pitot tube fixed in front of the submarine and along its axis is connected to the two limbs of a U-tube containing mercury, the reading of which is found to be 201 mm. find the speed of the submarine. Take the specific gravity of sea water = 1.025 times fresh water.	03 04
	(c)	Derive an expression for time of emptying a tank through an orifice of	07
		rectangular tank.	
Q.4	(a)	OR Classification of orifice.	03
V. 7	(b)	Water flows at the rate of $0.016~\text{m}^3/\text{s}$ through a 101 mm diameter orifice used in a 201 mm pipe. What is the difference in pressure head between the upstream section and venacontracta section? Take co-efficient of contraction $C_c = 0.6$ and $C_v = 1$.	04
	(c)	Derive an expression for time of emptying a tank through an orifice of circular horizontal tank.	07

Q.5	(a)	Define notches and weirs.	03
	(b)	Write short note on Pipes in compound pipes.	04
	(c)	What do you mean by "Most economical section" of an open channel?	07
		How it is determined?	
		OR	
Q.5	(a)	Define Vena-contracta and co-efficient of contraction.	03
	(b)	Distinguish between Notches and Weirs.	04
	(c)	Derive an expression for the discharge over a Triangular notch or weir.	07
