Seat No.:		
Scal INU		

Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III(NEW) EXAMINATION - WINTER 2022

Subject Code:3131307	Date:27-02-2023
Subject Name Paging of Environmental Hydrauling	

Subject Name: Basics of Environmental Hydraulics T

ime:02:30 PM TO 05:00 PM	Total Marks:70
--------------------------	----------------

T (
Instru	ctio	nc.
mou u	CHU	110.

1.	Attempt	all	questions.	

- 2. Make suitable assumptions wherever necessary.
- Figures to the right indicate full marks.

	4.	Simple and non-programmable scientific calculators are allowed.	Marks
Λ1	(a)	Define & Explain (i) Density (ii) Gauge Pressure (iii) Specific Gravity	03
Q.1	(a) (b)		04
	(c)	Derive an expression for Bernoulli's equation and mention the Assumptions.	07
Q.2	(a)	Define the term: Pitot tube.	03
	(b)	Explain the different types of fluids.	04
	(c)	State and prove the Pascal's law.	07
		OR	
	(c)	Derive an expression for the discharge through an Orificemeter.	07
Q.3	(a)		03
	(b)	A flat plate 30 cm \times 50 cm slides on oil ($\mu = 0.8 \text{ Ns/m}^2$) over a large plane surface. What is the force required to drag the plate at 2 m/s if separating oil film is 0.4 mm thick?	04
	(c)	Derive Chezy's formula for calculating loss of head due to friction in pipe. OR	07
Q.3	(a)	_	03
Q.O	(b)		04
	(c)	· · · · · · · · · · · · · · · · · · ·	07
Q.4	(a)	Define Co-efficient of Discharge and Co-efficient of Velocity.	03
	(b)	Find the discharge through a totally drowned orifice 2.0 m wide and 1 m deep, if the difference of water levels on both the sides of the orifice be 3 m. take $C_d = 0.62$.	04
	(c)	Derive an expression for time of emptying a tank through an orifice of circular horizontal tank.	07
		OR	
Q.4	(a)		03
	(b)		04
	(c)		07
Q.5	(a)		03
	(b)	S .	04
	(c)	Derive an expression for the discharge over a trapezoidal notch or weir.	07

OR

Q.5	(a)	Classification of flow in channels.	0.
	(b)	Classification of Notches and weirs.	04
	(c)	Derive an expression for the discharge over a Rectangular notch or weir.	0'