GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III (NEW) EXAMINATION - SUMMER 2024

	Subject Code:3131307 Date:06-07-202		
	Tim	ject Name: Basics of Environmental Hydraulics ae:10:30 AM TO 01:00 PM uctions: 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. 4. Simple and non-programmable scientific calculators are allowed.	Marks
Q.1	(a) (b)	Define (i) Mass Density (ii) Kinematic Viscosity (iii) Specific Gravity. Distinguish dynamic viscosity and kinematic viscosity. State their unit.	03 04
	(c)	Define the term Capillarity and derive the expression for height of capillary rise for a liquid. h= $4\sigma\cos\theta/\rho gd$.	07
Q.2	(a) (b) (c)	List the Application of Bernoulli's theorem. Explain the differential manometer with Sketch. Derive an expression for the discharge through an Orificemeter. OR	03 04 07
	(c)	State and prove the Pascal's law.	07
Q.3	(a) (b) (c)	Explain Pitot tube in details. State the difference between venturimeter and Orificemeter. List the minor losses and derive formula for calculating loss of head due to sudden Enlargement.	03 04 07
		OR	
Q.3	(a) (b) (c)	Define HGL and TEL State the various losses of energy when fluid flows through pipe. Derive Darcy-Weisbach formula for calculating loss of head due to friction in pipe.	03 04 07
Q.4	(a) (b) (c)	Define Co-efficient of Discharge and Co-efficient of Velocity. Explain vena-contracta and how does it occur? Derive an expression for time of emptying a tank through an orifice of circular horizontal tank.	03 04 07
		OR	
Q.4	(a) (b) (c)	Give detail Classification of Mouthpiece. Derive an expression for loss of head due to sudden contraction Derive an expression for time of emptying a tank through an orifice of rectangular tank.	03 04 07
Q.5	(a) (b) (c)	Classification of flow in channels. Write short note on flow through Pipes in Parallel. Derive an expression for the discharge over a Triangular notch or weir. OR	03 04 07
Q.5	(a) (b) (c)	Give the advantages of triangular notch over a rectangular notch. Distinguish between Notches and Weirs. What do you mean by "Most economical section" of an open channel? How it is determined?	03 04 07
