Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- III (NEW) EXAMINATION - SUMMER 2022

Subject Code:3131307 Date:18-07		7-2022	
•		Name:Basics of Environmental Hydraulics	
Time	e:02	:30 PM TO 05:00 PM Total Mai	:ks:70
Instru			
	1. 2. 3. 4.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Simple and non-programmable scientific calculators are allowed.	
	••	omple and non-programmable beteining calculators are anowed.	MARKS
Q.1	(a)	Define the following terms: (1) Mass Density (2) Gauge Pressure (3) specific gravity	03
	(b)	Explain the effect of temperature on the viscosity of liquids and gases.	04
	(c)	Explain the different types of fluids with figure.	07
Q.2	(a)	Explain piezometer with simple sketch.	03
	(b)	The weight of 5m ³ of a certain oil is 45 kN. Calculate its specific weight, mass density and specific gravity.	04
	(c)		07
	(c)	Derive an expression for Bernoulli's equation and mention the assumptions.	07
Q.3	(a)	Explain EGL and HGL.	03
•	(b)	-	04
	(c)	Derive Darcy Weisbach equation for loss of head due to friction in a pipe line.	07
		OR	
Q.3	(a)	•	03
	(b) (c)	Differentiate between Laminar and Turbulent flow. The water is flowing through a taper pipe of length 110 m having diameters 500 mm at the upper end and 250 mm at the lower end at the rate of 60 liters/s. The pipe has a slope of 1 in 50. Determine the pressure at the lower end if the pressure at the higher level is 70 kN/m ² .	04 07
Q.4	(a)	· · · · · · · · · · · · · · · · · · ·	03
	(b)	The diameter of a pipe at the section 1-1 and 2-2 are 150 mm and 250 mm respectively. If the velocity of water flowing through the pipe at section 1-1 is 4.5 m/s. Calculate discharge through the pipe and velocity of water at section 2-2.	04
	(c)	Derive an expression for the equation of continuity in a 3D flow in Cartesian co-ordinate system.	07
		OR	
Q.4	(a)		03
	(b)		04
	(c)	Derive an expression for most efficient and economical cross section for rectangular cross section.	07

Q.5	(a)		
	(b)		
	(c)	Derive an expression for the discharge through a large orifice.	07
		OR	
Q.5	(a)	Give classification of orifice.	03
	(b)	Give the advantages of triangular notch over a rectangular notch.	04
	(c)	Derive an expression for the discharge through a triangular notch.	07
