Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI (NEW) EXAMINATION - WINTER 2023

Subject Code:3161304 Date:02-12-2023

Subject Name:Biological Processes for Wastewater Treatment

Time:02:30 PM TO 05:00 PM **Total Marks:70**

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

			Marks
Q.1	(a)	Classify various types of biological treatment technologies with examples.	03
	(b)	Write a short note on bacterial growth curve with neat sketch.	04
	(c)	Enlist the different types of natural treatment system & describe any	07
Q.2	(a)	Define the terms: (1) F/M Ratio (2) MCRT (3) organic volumetric loading rate.	03
	(b)	A sample of wastewater was incubated for 7-days at 20°C and showed a BOD of 208 mg/L. assuming k=0.15/day calculate: 1. Its 5-day BOD 2. Ultimate BOD	04
	(c)	Enlist and explain factors affecting BOD test.	07
		OR	
	(c)	Differentiate between (1) aerobic and anaerobic process of wastewater treatment. (2) BOD and COD	07
Q.3	(a)	Define: (1) Substrate utilization rate (2) specific growth rate (3) biomass yield	03
	(b)	Make a list of possible modifications in activated sludge process.	04
	(c)	Determine the values of Co-efficient K,Ks,Y,kd,µm From the following data. Derive From a bench Scale activated Sludge Study using CFSTR Without Recycle.	07

	rinout Recyc	10.		ı
Unit	$S_0(mg/l)$	S _e (mg/l)	$\Theta = \Theta_{\rm c}({\rm days})$	X(mg/l)
no.	50(IIIg/1)	Se(IIIg/1)	O Oc(days)	7 x (111g/1)
1	300	7	3.2	128
2	300	13	2.6	125
3	300	18	1.6	133
4	300	13	1.1	129
5	300	41	1.1	121

OR

- 0.3 Distinguish between aerobic, anaerobic & facultative microorganism 03 (a) and their role in decomposition of organic matter. 04
 - Compare fine bubble & coarse bubble aeration system. **(b)**
 - (c) A series of BOD determination was made on a sample to calculate ultimate BOD and rate constant. Incubation was carried out on a 5% dilution of the sample at 20 °C when initial DO for the samples and blank was 9.17 mg/l., determine L & K by using least square method.

07

Day	Final DO in sample	Blank BOD in
	mg/L	mg/L
1	7.1	9.0
2	6.1	9.0
3	5.1	8.9
4	4.2	8.9
5	3.9	8.8
6	3.5	8.7
7	3.0	8.6

Q.4	(a)	Explain when anaerobic conditions are developed in a trickling filter.	03
	(b)	Explain with neat sketch subsurface flow system.	04
	(c)	Discuss the mechanism of working of UASB with neat sketch.	07
		OR	
Q.4	(a)	Determine the volume in liters of methane gas generated per kg COD consumed at STP	03
	(b)	Explain effect of any three characteristics of wastewater on natural treatment system	04
	(c)	Write a short note on Rotating biological contactor with neat sketch.	07
Q.5	(a)	Define reaction rates & explain first & second order types of reaction rates.	03
	(b)	Differentiate between packed bed reactor and fluidized bed reactor.	04
	(c)	Write down the mass balance for CFSTR with recycle and hence derive	07
		the equation for finding biokinetic constant.	
		OR	
Q.5	(a)	Enlist different types of reactors and explain any one.	03
	(b)	Draw a neat sketch of Bio tower and explain Bio tower	04
	(c)	Write down the mass balance for CFSTR without recycle and hence derive the equation for finding biokinetic constant.	07