GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI (NEW) EXAMINATION - SUMMER 2024

Subject Code:3161304 Date:15-05-2024

Subject Name: Biological Processes for Wastewater Treatment

Time: 10:30 AM TO 01:00 PM **Total Marks:70**

Instructions:

1. Attempt all questions.

4

300

300

(c) Draw a neat sketch of Sequential batch Reactor and explain it

- Make suitable assumptions wherever necessary.
- Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

		4. Simple	e anu non-programma	ne scientific carculators a	ire anowed.		MARKS		
Q.1	(a) (b)	-	_	m in wastewater treatr			03 04		
	(c)								
Q.2	(a)		the BOD progression curve.				03 d 04		
	(b)	Describe in brief the operating problems involved with following: (i) Trickling Filter and (ii) Rotating Biological Contactor							
	(c)	Describe three basic steps involved in the overall anaerobic oxidation of a waste. OR							
	(c)	Discuss the fundamental considerations in the application of natural treatment systems.							
Q.3	(a)	Write a short note on Bio-towers.							
	(b)								
	(c)	substrate utilization rate constant Write down the mass balance for CFSTR without recycle.							
	(-)	OR							
Q.3	(a)						03 8 04		
	(b)	A sample of wastewater was incubated for 7 days at 20° C and showed a BOD of 208 mg/L. assuming $k = 0.15$ /day calculate: (1) Its 5 day BOD, (2) Ultimate BOD							
	(c)								
Q.4	(a)	What do you mean by ThOD? Determine the ThOD of Glucose.							
-	(b)								
	(c)	Determine the values of coefficients k, k_S , Y, k_d and μ_m using the following data derived 0							
		from a bench scale study using CFSTR without recycle.							
		Unit N	, 0	S, mg/L BOD ₅	$\theta = \theta_{\rm C}$, days	X, mg/L			
		1	300	7	3.2	128			
		2	300	13	2.0	125			
		3	300	18	1.6	133			

41

30

1.1

1.1

129

121

		OR				
Q.4	(a)	Explain with neat sketch subsurface flow system.				
	(b)	Differentiate between plug flow reactor and continuous flow stirred tank reactor.	04			
	(c)	Draw a neat sketch of activated sludge process & explain the process in detail.	07			
Q.5	(a)	Differentiate between homogeneous and heterogeneous reactions with example.	03			
	(b)	Differentiate between the Oxidation Ditch & oxidation Ponds.	04			
	(c)	Enlist the factors affecting the performance of aerators and describe anyone in brief.	07			
	OR					
Q.5	(a)	Classify various types of biological treatment technologies with examples.	03			
	(b)	Differentiate between conventional treatment system and natural treatment system of wastewater.	04			

07