		GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VI (NEW) EXAMINATION – SUMMER 2024	
Subj	ect	Code:3161306 Date:17-05-2024	
Subj	ect	Name:Design of water Treatment Units	
Time	e:10	:30 AM TO 01:00 PM Total Marks:70	
Instru	ıctioı		
	1.	Attempt all questions.	
		Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
	4.	Simple and non-programmable scientific calculators are allowed.	
Q.1	(a)	Draw the conventional surface water treatment diagram and explain each unit	03
		in detail.	
	(b)	Define following parameters with its importance in design of sedimentation unit.	04
	(D)		VŦ
		(i) SOR (ii) WOR (iii) Scour Velocity (iv) Detention Time	
	(c)	Explain the Nalgonda Techniques for fluoride removal from ground water. Also explain advantages and disadvantages of Nalgonda Technique.	07
Q.2	(a)	Write the applications of Fine Screen and Coarse Screen for drinking water treatment plant	03
	(b)	•	04
	(c)	Design a tube settler module of square cross section with following data	07
	(C)	Design flow = 2 MLD	07
		Dimensions of tube = $50 \text{ mm } \text{x} 50 \text{mm}$	
		Length of tube $= 1 \text{ m}$	
		Angle of inclination = 45°	
		OR	
	(c)	Calculate number of chlorine cylinders required for chlorination unit for 500	07
		MLD drinking water treatment plant. Assume standard values.	
Q.3		Design a Clariflocculator for design flow of 10 MLD. Assume the following data:	14
		i. Detention time for flocculator = 25 minutes	
		ii. Height for flocculator = 3 m	
		iii. Area of paddles= 20% of sectional area of plane	
		iv. $G=30 \text{ second}^{-1}$	
		Detention time for clarifier = 2.5 hours OR	
Q.3		-	14
~			1 -1
		average flow of 10000 m ³ /d. Assume surface overflow rate is 35 m ³ /m ² -d and	
		depth of tank is 3.5 m. Check for WOR and Detention time.	

- **Q.4** (a) For a flow of $1 \text{ m}^3/\text{s}$, how many RSF bed of area $12 \text{ m} \times 24 \text{ m}$ are needed for a **14** filtration rate of $100 \text{ m}^3/\text{ m}^2\text{-}$ d? Also find depth of Sand bed , Gravel Bed and design under drainage system.

OR

Q.4	(a)	Design a bar screen for a Average flow of 20 MLD. Assume following conditions:	14
		i. Diameter of sewer = 1.5 m	
		ii. Depth of flow at peak design flow = 1 m	
		iii. Velocity at peak design flow = 0.8 m/s	
		iv Drop of screen chamber flow with respect to sewer invert = 0.08 m	
Q.5	(a)	Draw a neat sketch of parshall flume and indicate different components in the figure.	03
	(b)	Draw a neat sketch of Cascade Aeration and explain in detail.	04
	(c)	Enlist and explain control methods of iron and manganese from ground water	07
		OR	
Q.5	(a)	Enlist the sources of residuals generates from the drinking water treatment plant. Also write its physical characteristics.	03
	(b)	Write a short note on Management of sludge and liquid residue.	04
	(c)	Make up a bar diagram in terms of calcium carbonate for a water with following composition: $Ca^{+2} = 115 \text{ mg/L}$ $Mg^{+2} = 4.75 \text{ mg/L}$ $Na^{+} = 14 \text{ mg/L}$ $HCO_{3}^{-} = 235 \text{ mg/L}$ $SO_{4}^{2-} = 88.4 \text{ mg/L}$ $Cl^{-} = 21.3 \text{ mg/L}$	07
