GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-VII (NEW) EXAMINATION – WINTER 2024

Subject Code:3171309 Date:16-12-2024

Subject Name: Advanced Wastewater Treatment Technologies

Time:10:30 AM TO 01:00 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

٦.	Sim	pre and non-programmable scientific calculators are anowed.	MARKS									
Q.1	(a)	11										
	(b)	water treatment. Explain the need of advanced wastewater treatment technologies.	04									
	(c)	Write a note on "air stripping" as chemical process for nitrogen removal from wastewater with neat sketch.	07									
Q.2	(a)	Highlight the need for removal of nutrients from wastewater.										
	(b)	Enlist the sources of phosphorous in wastewater. Mention the forms in which phosphorous occur.	04									
	(c) With the help of neat sketches explain the modes operation in membrane filtration unit of MBR. OR											
	(c)	With the help of neat sketches explain the procedure of membrane cleaning of MBR.	07									
Q.3	(a)	Explain the factors that reduce membrane performance.	03									
	(b)	Write a note on "Membrane fouling."	04									
	(c)	Write a short note: Anaerobic Membrane Bioreactors.										
OR												
Q.3	(a)	How does MBR process differ from conventional ASP?	03									
	(b)	Discuss the application of microfiltration, ultra-filtration and reverse osmosis.	04									
	(c)	The following laboratory data were collected in batch adsorption study. Plot the data according to Langmuir isotherm and determine the values of constants a and b. A volume of 500 ml is placed in each flask and wastewater has initial COD is 100 mg/L.	07									

Flask No.	Mass of carbon (mg)	Final COD in mg/L
1	960	3.5
2	740	5.2
3	545	8.0
4	385	12.5
5	260	20.5
6	170	33
7	0	100

Q.4	(a)	Enlist the applications of Advanced oxidation process.									
	(b)	Explain the Fenton oxidation process for removal of refractory									
		organics from waste water.									
	(c)	A wastewater containing Co=25 mg/L of phenol is to be treated									
		using PAC to produce effluent concentration Ce=0.1 mg/L.									
		The constants for Langmuir isotherm are to be determined									
		using results given below. The volume of waste in each beaker									
		is 1 L. If the flow rate of 0.11m3/s is to be treated, calculate									
		the quantity of PAC needed per day. Test PAC Concentration Test PAC Concentration									
		Test	added	remaining	Test	added	remaining				
			(g)	(mg/L)		(g)	(mg/L)				
		1	0.25	6.0	5	1.5	0.06				
		2	0.32	1.0	6	2.0	0.06				
		3	0.5	0.25	7	2.6	0.06				
		4	1.0	0.09							
		<u> </u>		0	R						
Q.4	(a)	Explai	n in deta	il the concept of	"Elec	tro floata	ation".	03			
	(b)	Enlist and explain factors affecting Electro floatation.									
	(c)	Enlist and explain factors affecting Electro floatation. 0 Enlist the operating parameters to be maintained during 0									
	(C)	electro-coagulation and explain all in detail.									
		ciccus congulation and explain an in actain.									
0.5	()	5 11 .		CT 1				0.2			
Q.5	(a)		• •	s of Ion exchang				03			
	(b)	Explain the process of resin regeneration.									
	(c)	Enlist the methods for chemical precipitation of phosphorous. 0									
		Explain any one method with equation.									
				O	R						
Q.5	(a)	Explai	n the me	echanism of adso	rption	with nea	at sketch.	03			
	(b)			angmuir and Fr	endlui	ch isoth	erm along with	04			
		assumptions.									
	(c)	Explain the mechanism involved in the softening of non 0'									
		carbonate hardness of magnesium.									
