Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE – SEMESTER- VII EXAMINATION-SUMMER 2023

Subject Code: 3171307 Date: 28/06/2023

Subject Name: Design of Air Pollution Control Equipments

Time: 10:30 AM TO 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed

Q.1	(a) (b) (c)	Draw a section view of Electrostatic precipitator. Highlight concept of pressure drop in air pollution system with neat sketch. To find out density of a flue gas with following composition: $CO_2 = 13.53 \%$, $N_2 = 39.00\%$, $SO_2 = 0.04\%$, $H_2O=46.02\%$ $O_2 = 1.5\%$	MARKS 03 04 07
Q.2	(a)	Calculate pressure drop for the cyclone separator. (Conventional Cyclone) $Dc = 1.4 \text{ m}$ $Vi= 12.76 \text{ m/sec}$ $Gas \ density = 0.895 \ kg/m^3$ $Inlet \ dust \ loading = 100 \ mg/m^3$	03
	(b)	To find out the height of pyramid hopper for a fabric filter collecting carbon dust having valley angle of 600. Top dimensions of hopper are 3.1 m x 3.4 m and bottom dimensions of hopper are 0.3 m x 0.3 m	04
	(c)	A filter has 1000 m ² face area and 9 m ³ /s of air carrying dust concentration of 0.001 kg/m ³ . Assume RF= 20000 N.s/m ³ and RP= 25000 s ⁻¹ . If the filter must be clean when pressure drop= 2100 N/m ² . After what period of time must cleaning occur? OR	07
	(c)	A horizontal parallel plate ESP consists of a single duct 7 m length and 6 m depth with a 270 mm plate to plate spacing. Given a collecting efficiency at a gas flow rate of 120 m ³ /min. You are required to determine the bulk velocity of gas, drift velocity of gas, and outlet loading of ESP. Inlet loading = 6.5 g/m^3 Collection efficiency = 88%	07
Q.3	(a)	Define following terms with design equations: 1. Migration velocity 2. Number of effective turns 3. Pressure drop (in context of bag filter)	03
	(b) (c)	Draw plan and section of Bag filter An Electrostatic precipitator with a specific collection area of $0.984 \text{ m}^2/\text{m}^3/\text{min}$ is found to have overall collection efficiency of 97%. If the value of A/Q is increased to $1.315 \text{ m}^2/\text{m}^3/\text{min}$ estimate the anticipated collection efficiency on the basis of Dutsch and Hazen Equation. Take $n=4$.	04 07

Q.3	(a)	Define following terms with design criteria: 1. Inlet velocity of cyclone 2. A/c ratio 3. Can Velocity 4. SCA 5. Resistivity	03
	(b) (c)	6. Cut size diameter	04 07
Q.4	(a) (b) (c)	Make a necessary Mass balance of an Absorption Tower.	03 04 07
Q.4	(a) (b) (c)	Highlight importance of cyclonic scrubber for gaseous pollutant removal.	03 04 07
Q.5	(a)	Define following terms: 1. Gauge Pressure 2. Capture velocity 3. Friction loss	03
	(b) (c)	Define duct system and explain basic principles in duct design.	04 07
Q.5	(a) (b) (c)	Enlist sources of dust and suggest appropriate dust control system. Differentiate between ID fan and FD fan.	03 04 07
