Seat No.: _____

Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY

hi	oot	Code:3171306 EXAMINATION – WINTER 2022 Date:03-01-2023	
•		Code:3171306 Date:03-01-2023 Name:Wastewater Engineering	
•		:30 AM TO 01:00 PM Total Marks:70	
nstru			
iisti u		Attempt all questions.	
		Make suitable assumptions wherever necessary.	
		Figures to the right indicate full marks.	
	4.	Simple and non-programmable scientific calculators are allowed.	
Q.1	(a)	Enlist and explain sources of Domestic wastewater.	03
	(b)	S S	04
		appropriate labels.	^=
	(c)	Differentiate between Industrial Wastewater and Municipal Wastewater.	07
Q.2	(a)	Write a short note on Operational Problems of following Primary Treatment	03
		Units: (1) Screens (2) Grit Chamber (3) Equalization Tank	
	(b)	1 1 1	04
	(a)	sketch. Determine the surface area and depth of Oil and Grease Trap to remove 180 mg/L	07
	(c)	of Oil and Grease from flow of 52000 m ³ /day. Assume detention time 5 min and	U /
		250 m ² surface area requirement for wastewater flow of 1 m ³ /s.	
		OR	
	(c)	\mathcal{E}	07
		flow of 8 MLD. Also determine air requirement. Assume following data:	
		• Peaking Factor = 2.5	
		• Provision of 2 grit chambers in one unit	
		• Detention time = 5 min	
		• Depth = 2 m	
		• Width to Depth Ratio = 2:1	
		• Air supply rate = $0.3 \text{ m}^3/\text{min}\times\text{meter}$	
Q.3	(a)	What is Grit? Discuss the significance of Grit Chamber.	03
	(b)	C	04
	(c)	Determine number of bars and its length for Coarse screen with following data.	07
		• Peak flow = 50 MLD	
		• Velocity through bar = 0.75 m/s	
		 Depth of Water in approach channel = 1 m 	
		• Spacing between bars = 30 mm	
		• Width of bar = 12 mm	
		OR	
Q.3	(a)	Define the following parameters and explain its importance in design (1) SOR (2) WOR (3) Detention Time	03
	(b)		04
	(c)	Determine Diameter and Depth of Sedimentation Tank to treat wastewater with	
		following data and also check design for WOR and SOR at Peak flow.	,,
		• Avg wastewater flow = 35000 m ³ /day	
		• SOR = $40 \text{ m}^3/\text{ m}^2 \times \text{day}$	
		 Detention Time = 2 hrs 	

		• Peaking Factor = 2.5	
Q.4	(a)	Explain foaming as an operational problem of Activated Sludge Process and how to overcome it.	03
	(b)	Explain bulking of sludge and how to overcome this problem.	04
	(c)	Determine the diameter of Secondary Settling Tank with following data and	07
		check it for SOR and WOR.	
		• Design flow = $13000 \text{ m}^3/\text{day}$	
		• Recycle ratio = 0.5	
		• MLSS Concentration = 2500 mg/L	
		• Solids Loading Rate = $108 \text{ Kg/m}^2 \times \text{day}$	
		OR	
Q.4	(a)	Write a short note on Stabilization Pond.	03
	(b)	Write operational problems of Anaerobic Treatment units An activated sludge system is to be used for secondary treatment of 10000 m ³ /day.	04 07
	(c)	An activated sludge system is to be used for secondary treatment of 10000 m ³ /day of municipal wastewater. After primary clarification, the BOD is 150 mg/L and	U/
		it is desired to have not more than 5 mg/L of soluble BOD in the effluent. A	
		completely mixed reactor is to used and pilot plant analysis has estimated the	
		following kinetic values: $Y = 0.5$, $Kd = 0.05 d^{-1}$. Assume MLSS concentration of	
		3000 mg/L and underflow concentration of 10000 mg/L from secondary clarifier.	
		Determine the following: (1) The volume of reactor (2) The mass and volume of	
		solids that must be wasted each day (C) The recycle ratio.	
Q.5	(a)	Explain working of Rotating Biological Contactor.	03
	(b)	Write a short note on Extended Aeration.	04
	(c)	Determine number and size of Sludge Drying Beds to dewater the digested	07
		sludge produced from sewage treatment plant for 50000 population. Assume	
		following Data: Dry Solida Concentration in Primary and Activated Mix Sludge - 70	
		• Dry Solids Concentration in Primary and Activated Mix Sludge = 70	
		gm/Capita/Day.	
		• Dry Solids Loading Rate = 100 Kg/m²/year	
		• Sludge contain 70% solids	
		• Specific Gravity of Sludge = 1.02	
Q.5	(a)	OR Differentiate between Diffused Aerator and Surface Aerator.	03
Ų.S	(a) (b)	Draw a labeled diagram of UASB reactor and explain its component.	03
	(c)	Determine volume of anaerobic sludge digestor for following data:	07
		• Wastewater Flow = 8 MLD	
		 Suspended Solids Concentration = 250 mg/L 	
		• Volumetric Loading Rate = 45 m ³ digestor volume per 1000 persons	
		 Solids contribution = 70 gm/Capita/Day. 	
