GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII EXAMINATION - SUMMER 2025

Subject Code:3171306 Date:19-05-2025

Subject Name:Wastewater Engineering

Time:02:30 PM TO 05:00 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

Ο1	(a)	What is the numers of an equalization tank in westerwater treatment?	Marks
Q.1	(a) (b)	What is the purpose of an equalization tank in wastewater treatment? Write a short note on Operational Problems of following Primary Treatment Units: (1) Screens (2) Grit Chamber (3) Equalization Tank	03
	(c)	Determine the surface area and depth of Oil and Grease Trap to remove 150 mg/L of Oil and Grease from flow of 50000 m ³ /day. Assume detention time 5 min and 250 m ² surface area requirement for wastewater flow of 1 m ³ /s.	07
Q.2	(a)	<u> </u>	03
	(b) (c)	(1) Bio Tower (2) Aerators (3) Return Sludge Discuss design considerations of Primary Settling Tank Design a bar screen for 5 MLD flow assuming suitable data.	04 07
		OR	
0.4	(c)	Assuming suitable criteria, design a grit chamber with a proportional flow weir for treating the wastewater having 900 m ³ /h average flow.	07
Q.3	(a)	What are the operational challenges associated with manual and mechanical cleaning of coarse screens?	03
	(b)	How does the shape of the aerated grit chamber influence its performance?	04
	(c)	Design a Primary Sedimentation tank to treat the domestic waste water flow of town having 5,00,000 Population Strength of Wastewater generated = Medium; Average rate of water supply =250 lpcd; waste water generation rate =80%; suspended solids in wastewater = 250 mg/lit, BOD ₅ =200 mg/lit; Detention Time =2,0 hrs. Surface Loading rate = [At Daily average flow=40 m³/m²-d (m/d)], [At Peak flow=100m³/m²-d (m/d)]	07
		OR	
Q.3	(a)	What are the advantages and disadvantages of aerobic wastewater treatment?	03
	(b)	What are the advantages of using an aerated grit chamber over a conventional one?	04
	(c)	Design a secondary settling tank of Activated Sludge Process for average flow of 20,000 m ³ /day. Assume MLSS concentration 3500 mg/L. Assume suitable design criteria.	07
Q.4	(a)	Briefly discuss the following terms:	02
		1. Rate of reaction 2. Heterogenous reaction 3. SRT	03
	(b)	Enlist the key design parameters for anaerobic digesters used in sludge treatment?	04
	(c)	Design a rotating biological contactor to treat 8 MLD flow of municipal wastewater having BOD ₅ concentration of 290 mg/l. The primary	07

treatment removes 30%	raw BOD5 and	desired effluent	BOD5 is 30 mg/l .
Assume $0.05 \text{ m}^3/\text{m}^2$ -d hy	ydraulic loading	and other suitab	le data if needed.

OR

Q.4	(a)	How does aerobic biological treatment remove organic matter from wastewater?	03
	(b)	Discuss about operational issues of attached growth process.	04
	(c)	Design a bio-tower system to treat a wastewater flow of 10 MLD having settled BOD ₅ equal to 190 mg/l and to be operated at 25°C. The depth of	
		modular plastic media to be used is 5.0 m and the recirculation ratio will be 2:1. The treatability constant determined at 20°C is found to be 0.06	07
		min-1 and desirable concentration of effluent BOD ₅ is 20 mg/l.	
Q.5	(a)	Draw a labeled diagram of UASB reactor and explain its component.	03
	(b)	Determine volume of anaerobic sludge digestor for following data: Wastewater Flow =12 MLD	
		Suspended Solids Concentration = 250 mg/L	04
		Volumetric Loading Rate = 55 m^3 digestor volume per 1200 persons	
		Solids contribution = 70 gm/Capita/Day.	
	(c)	Assuming suitable design criteria and following characteristics of	
		domestic wastewater, design a UASB reactor system to treat an average	
		5.0 MLD flow of wastewater. Assume up flow velocity = $0.5 m/h.$	
		Given data:	
		Influent $BOD = 280 \text{ mg/L}$	07
		Influent $COD = 750 \text{ mg/L}$	
		Influent $TSS = 350 \text{ mg/L}$	
		Influent $VSS = 300 \text{ mg/L}$	
		Desired effluent $BOD = 100 \text{ mg/L}$ or less.	
		OR	
Q.5	(a)	What is a sludge digester and how does it function in sludge treatment?	03
	(b)	Define& briefly explain:	
		(1) Specific growth rate (2) Endogenous decay coefficient (3) Maximum	04
		substrate utilization rate constant (4) Substrate utilization rate	
	(c)	Design sludge drying beds to dewater the digested sludge produced from	
		wastewater treatment plant based on the activated sludge process designed	07
		for 40000 population. Dry solid concentration of in ASP: 70 g/Capita/day.	U/
		Assume all necessary data for calculation.	
