GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII (NEW) EXAMINATION - SUMMER 2024

Subject Code:3171306 Date:24-05-2024

Subject Name: Wastewater Engineering

Time:02:30 PM TO 05:00 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

Marks 03

03

04

07

- **Q.1** (a) Draw diagram of various conventional Treatment schemes for domestic wastewater, municipal wastewater and industrial wastewater with appropriate labels.
 - (b) Draw different phases of SBR and distinguish between static fill and mixed fill.
 - (c) Explain the phenomena involved in secondary treatment through Activated Sludge process.
- Q.2 (a) Enlist and explain various types of waste stabilization ponds
 - (b) Discuss the working of sludge digester and Sludge thickener.
 - (c) The data of wastewater generated by a community on an hourly basis is tabulated below. Design equalization basin using the given data.

Time	1	2	3	4	5	6	7	8	9	10	11	12
(h)												
Flow (2.0	7.2	7.5	6.7	8.3	9.3	20.0	25	31	27.5	24	20
m3/min)												
Time	13	14	15	16	17	18	19	20	21	22	23	24
(h)												
Flow (21	19	15	10	6.5	7.6	7.2	6.8	5.5	4.5	3.5	3.0
m3/min)												

OR

- (c) Assuming suitable design criteria and peaking factor of 1.5, design a screen chamber for 3 MLD average flow of effluent. Also estimate the quantity of screening to be handled. following are assumptions for a coarse screen chamber:
 - (i) Peak wastewater flow = 30 MLD
 - (ii) Depth of incoming sewer = 1.3 m
 - (iii)Depth of water in incoming sewer = 1.0 m
 - (iv) Velocity of flow during peak condition in sewer = 0.8 m/sec
 - (v) Drop of screen with respect to sewer invert = 0.08 m

Determine the number of bars, spacing between bars, length of bar and total width of screen chamber and check for headloss.

- Q.3 (a) Define the following parameters and explain its importance in design (1) SOR (2) WOR (3) Detention Time
 - (b) Determine Length and Width of Aerated Grit Chamber for average wastewater flow of 8 MLD. Also determine air requirement. Assume following data: Peaking Factor = 2.5, Provision of 2 grit chambers in one unit, Detention time = 5 min, Depth = 2 m, Width to Depth Ratio = 2:1, Air supply rate = 0.3 m³/min×meter
 - (c) Design Rotating biological contactor to treat 12 MLD domestic wastewater having BOD₅ concentration of 280 mg/L. 27 % BOD₅ removes in primary treatment.

Desired effluent BOD ₅ is 30mg/L.	Assume	0.06	m^3/m^2-d	hydraulic	loading.	Also
assume necessary data.						

ΩR

		OR .	
Q.3	(a) (b)	Write operational problems of Anaerobic Treatment units. Design a bio-tower system to treat a wastewater flow of 8 MLD having settled $BOD_5 = 175 \text{ mg/L}$ & to be operated at 25°C. The depth of modular plastic media to be used is 6.0 m & recirculation ratio will be 2:1. The treatability constant determined at $20^{\circ}\text{C} = 0.06 \text{ min}^{-1}$ & desirable concentration of effluent is 20 mg/L. Design complete mix activated sludge process to treat 25 MLD municipal wastewater having following wastewater characteristics Influent $BOD_5 = 234 \text{ mg/L}$ Desired $BOD_5 = 30 \text{ mg/L}$ MLVSS in reactor $= 3500 \text{ mg/L}$	03 04 07
		MLSS/L in recycled sludge = 10000 mg/L Designed mean cell residence time = 10 Days K =0.1 per day	
Q.4	(a) (b)	Write design criteria for Aerated Grit Chamber. Discuss the Design consideration of Sequencing Batch Reactor and write its design steps.	03 04
	(c)	Assuming suitable design criteria and design primary settling tank (Circular) using the data given below. Total average flow: 50 MLD, Peak Factor = 2.5, Suspended solids = 325 mg/L, Number of unit = 4, SWD= 3 m.	07
		OR	
Q.4	(a) (b) (c)	Write design criteria for Oil and Grease Trap. Briefly discuss the function of the following: (1) Skimming Tank (2) Contact Beds Assuming suitable design criteria and following characteristics of domestic wastewater, design a UASB reactor system to treat an average 4.0 MLD flow of wastewater. Assume up flow velocity = 0.5 m/h. Given data: Influent BOD = 300 mg/L Influent COD = 800 mg/L Influent TSS = 350 mg/L Influent VSS = 300 mg/L Desired effluent BOD = 100 mg/L or less.	03 04 07
Q.5	(a) (b)	Enlist various steps of Anaerobic Sludge Digestion Process Explain bulking of sludge and how to overcome this problem.	03 04
	(c)	Determine number and size of Sludge Drying Beds to dewater the digested sludge produced from sewage treatment plant for 50000 population. Assume following Data: Dry Solids Concentration in Primary and Activated Mix Sludge = 70 gm/Capita/Day. Dry Solids Loading Rate = 100Kg/m2/year , Sludge contain 70% solids , Specific Gravity of Sludge = 1.02OR	07
Q.5	(a)	Differentiate between Attached Growth Process and Suspended Growth Process.	03
	(b)	Explain working of septic tank.	04
	(c)	Explain the working mechanism of Rotating Biological Contractor with neat sketch.	07