GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-VII (NEW) EXAMINATION – WINTER 2024

Subject Code:3170202 Date:04-12-2024

Subject Name: Automotive Component and system Design

Time:10:30 AM TO 01:30 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.
- 5. PSG design data book is permitted during university exam.

MARKS

- Q.1 (a) Define standardization. Enlist different standards used in mechanical engineering design.
 - **(b)** Explain with suitable example basic series' and 'derived series.

04

07

(c) Select a single row deep groove ball bearing with the operating cycle listed below, which will have a life of 15000 hours.

Fraction	Type of load	Radial	Thrust	Speed	Service
of cycle		(N)	(N)	(RPM)	factor
1/10	Heavy shocks	2000	1200	400	3.0
1/10	Light shocks	1500	1000	500	1.5
1/5	Moderate shocks	1000	1500	600	2.0
3/5	No shock	1200	2000	800	1.0

Take radial and axial load factors to be 1.0 and 1.5 respectively and inner race rotates.

Q.2 (a) Explain the ergonomic considerations in design.

03

(b) Explain different types of fits with neat sketch.

04

(c) Design a pair of spur gear to transmit 15 kW power from electric motor shaft running at 1500 rpm to a machine shaft from the following specifications:

07

Tooth system = 20° pressure angle full depth involute.

Number of teeth on pinion = 25

Speed reduction ratio = 3:1

Service factor = 1.25

Material of pinion and gear = FG 200

Design bending stress of the material = 60 MPa

Surface hardness of pinion and gear = 200 BHN

Endurance strength of the material = 84 MPa

Dynamic load factor = 178 N/mm

Modulus of elasticity = $1.1 \times 10^5 \text{ MPa}$

Assume pitch line velocity as 7.5 m/sec for initial module calculation.

	(c)	The cylinder of a four-stroke diesel engine has the following specifications: Cylinder bore = 150 mm Maximum gas pressure = 3.5 MPa	07
		Cylinder material = Grey cast iron FG 200 (Sut = 200 N/mm ²)	
		Factor of safety = 5	
		Poisson's ratio = 0.25	
		Determine the thickness of the cylinder wall. Also, calculate the apparent and net circumferential and longitudinal stresses in the cylinder wall.	
Q.3	(a)	Define the following terms with respect to rolling contact bearing. (1) Basic static load rating (2) Rating life (3) Minimum life	03
	(b)	Define following terms. (1) Backlash (2) Diametral pitch (3) Module (4) Dedendum	04
	(c)	A pair of parallel helical gears consists of a 20 teeth pinion meshing with a 100 teeth gear. The pinion rotates at 720 rpm. The normal pressure angle is 20° , while the helix angle is 25° . The face width is 40 mm and the normal module is 4 mm. The pinion as well as the gear is made of steel $40C8$ (Sut $= 600 \text{N/mm}^2$) and heat treated to a surface hardness of 300BHN . The service factor and the factor of safety are 1.5 and 2 respectively. Assume that the velocity factor accounts for the dynamic load and calculate the power transmitting capacity of gears.	07
		OR	
Q.3	(a)	State the advantages and disadvantages of gear drive over other power transmission devices.	03
	(b)	With neat sketch explain the different types of roller bearings with their importance in industry.	04
	(c)	Explain synchromesh gear box with neat sketch.	07
Q.4	(a)	List the various types of steering gearbox.	03
	(b)	State the role of steering knuckle.	04
	(c)	A pair of bevel gears, with 20° pressure angle, consists of a 20 teeth pinion meshing with a 30 teeth gear. The module is 4 mm, while the face width is 20 mm. The material for the pinion and gear is steel 50C4 (Sut = 750 N/mm²). The gear teeth are lapped and ground (Class-3) and the surface hardness is 400 BHN. The pinion rotates at 500 rpm and receives 2.5 kW power from the electric motor. The starting torque of the motor is 150% of the rated torque. Determine the factor of safety against bending failure and against pitting failure.	07
0.4		OR	0.7
Q.4	(a)	Explain tractive effort.	03
	(b)	State the method of drawing structural diagrams.	04
	(c)	The following data is given for the piston of a four-stroke diesel engine: Cylinder bore = 250 mm	07
		Material of piston rings = Grey cast iron	
		Allowable tensile stress = 100 N/mm^2	
		Allowable radial pressure on cylinder wall = 0.03 MPa	
		Thickness of piston head = 42 mm	

		(i) radial width of the piston rings;	
		(ii) axial thickness of the piston rings;	
		(iii) gap between the free ends of the piston ring before assembly;	
		(iv) gap between the free ends of the piston ring after assembly;	
		(v) width of the top land;	
		(vi) width of the ring grooves;	
		(vii) thickness of the piston barrel; and	
		(viii) thickness of the barrel at open end.	
Q.5	(a)	Give a comparison of disc brake and drum brake.	0.
	(b)	With neat sketch explain the working of valve gear mechanism of an I.C. engine.	04
	(c)	Explain with neat sketch the telescopic type suspension system.	0'
		OR	
Q.5	(a)	Explain the Ackermann steering principle.	0.
	(b)	Explain brake efficiency.	04
	(c)	With neat schematic diagram explain hydraulic braking system.	0'

Number of piston rings = 4

Calculate:
