Seat No.:	Ennalment Ma
Sear NO.	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

		BE - SEMESTER-VII (NEW) EXAMINATION – WINTER 202	2
Subj	ect	Code:3170202 Date:03-0	1-2023
Subj	ect]	Name: Automotive Component and system Design	
Time	:10	:30 AM TO 01:30 PM Total Ma	rks:70
Instru			
	1.	Attempt all questions.	
	2. 3.	Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
	3. 4.	Simple and non-programmable scientific calculators are allowed.	
	5.	Use Design Data Book wherever necessary.	
			MARKS
Q.1	(a)	Explain Standardization.	03
	(b)	What are preferred numbers? Explain its importance.	04
	(c)	State and explain design consideration of casting.	07
0.1	(.)		0.2
Q.2	(a) (b)	•	03 04
	(D)	design.	04
	(c)	Derive Stribeck's equation.	07
		OR	
	(c)	Explain the types of rolling contact bearing with its application and necessary figure.	07
Q.3	(a)	What are the advantages of using oil instead of grease in bearings?	03
	(b)		04
	(c)		07
		bearings supporting the shaft are subjected to stationary equivalent	
		radial load of 3 kN for 10 percent of time, 2 kN for 20 per cent of time,	
		1 kN for 30 percent of time and no load for remaining time of cycle. If the total life expected for the bearing is 20×10^6 revolutions at 95	
		percent reliability, calculate dynamic load rating of the ball bearing.	
		OR	
Q.3	(a)	State different modes of gear teeth failures.	03
	(b)		04
	()	(4) Addendum.	0=
	(c)		07
		1500 rpm. If the gear has 24 teeth, determine the necessary module, pitch diameter and face width for 20° full depth teeth. The static stress for cast	
		steel may be taken as 56 MPa. The width of the face may be taken as 3	
		times the normal pitch. What would be the end thrust on the gear? The	
		tooth factor for 20° full depth involute gear may be taken as 0.154 –	
		$\left(\frac{0.912}{T_E}\right)$, where T_E represent the equivalent number of teeth.	
Q.4	(a)	Write the advantages and disadvantages of gear drive compared to other	03
~	()	power transmission devices.	-
	(b)	State the law of gearing and explain it.	04
	(c)	Explain with neat sketch Power Steering of Today's automobile.	07
		OR	

Q.4 (a) Explain Leaf Spring.

1

03

	(b) (c)	What is tractive effort? Explain it. Explain with neat sketch the telescopic type suspension system.	04 07
Q.5	(a) (b) (c)	Why I section is more preferred for connecting rod? Compare Disc Brake with Drum Brake. The cylinder of a four-stroke diesel engine has the following specification. Brake power =5 kW, Speed =1200 rpm, Indicated mean effective pressure =0.35MPa, Mechanical efficiency =80%, Max. gas pressure =3.15 MPa. Calculate i. Bore and length of the cylinder liner, ii. Thickness of the cylinder head, iii. Size, number and pitch of studs.	03 04 07
		OR	
Q.5	(a)		03
		1. Piston rings, 2. Piston skirts, 3. Piston pin.	
	(b)	What are the advantages and disadvantages of wet liner and Dry liner in	04
	()	IC Engines?	0=
	(c)	Design a cast iron piston for a single acting four stroke engine for the following data: Cylinder bore = 100 mm; Stroke = 125 mm; Maximum gas pressure = 5 N/mm²; Indicated mean effective pressure = 0.75 N/mm²; Mechanical efficiency = 80%; Fuel consumption = 0.15 kg per brake power per hour; Higher calorific value of fuel = 42 × 10³ kJ/kg; Speed = 2000 rpm. Taking Permissible bending or tensile stress for C.I = 38 N/mm²; C = Constant representing that portion of the heat supplied to the engine which is absorbed by the piston is 0.05. cast iron, Heat conductivity factor k = 46.6 W/m/°C, and Temperature difference at the centre of the piston head and temperature at the edges piston head is = 220°C; Pressure of the gas on cylinder wall is 0.035; Allowable tensile or bending stress for C.I ring is 90 N/mm²; Bearing pressure on the piston barrel is 0.45 N/mm² Bearing pressure at small end of connecting rod is 25 N/mm²; Bending stress for piston pin is 140 N/mm².	07
