GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII EXAMINATION - SUMMER 2025

Subj	ect (Code:3170202 Date:19-	05-2025
•	e:02	Name:Automotive Component and system Design :30 PM TO 05:30 PM Total Mas:	arks:70
	1. 2. 3.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
	4.	Simple and non-programmable scientific calculators are allowed.	MARKS
Q.1	(a) (b)		03 04
	(c)	Derive Stribeck's equation.	07
Q.2	(a) (b) (c)	Define Dynamic Load Carrying Capacity.	03 04 07
	()	OR	0=
	(c)	A single-row deep groove ball bearing is subjected to a pure radial force of 3 kN from a shaft that rotates at 600 rpm. The expected life L10h of the bearing is 30 000 h. The minimum acceptable diameter of the shaft is 40 mm. Select a suitable ball bearing for this application.	07
Q.3	(a) (b)	5	03 04
	(c)	It is required to design a pair of spur gears with 20° full-depth involute teeth based on the Lewis equation. The velocity factor is to be used to account for dynamic load. The pinion shaft is connected to a 10 kW, 1440 rpm motor. The starting torque of the motor is 150% of the rated torque. The speed reduction is 4:1. The pinion as well as the gear is made of plain carbon steel 40C8 (S = 600 N/mm2). The factor of safety can be taken as 1.5. Design the gears, specify their dimensions and suggest suitable surface hardness for the gears.	07
		OR	0.0
Q.3	(a) (b) (c)	Justify the use of involute profile for gear tooth.	03 04 07

(v)	i) 1	the	addendum	and	dedendum	circle	diameters	of the	pinion
-----	------	-----	----------	-----	----------	--------	-----------	--------	--------

Q.4	(a) (b) (c)	Explain the Ackermann steering principle. Compare Disc Brake with Drum Brake. Following data is given for a caliper disk brake with annular pad, for the front wheel of the motorcycle: torque capacity = 1500 N-m outer radius of pad = 150 mm inner radius of pad = 100 mm coeffi cient of friction = 0.35 average pressure on pad = 2 MPa number of pads = 2 Calculate the angular dimension of the pad.	03 04 07
Q.4	(a) (b) (c)	Define brake efficiency. Explain the functions of piston rings. The following data is given for a caliper disk brake, with circular pad, for the lightweight two-wheeler, torque capacity = 1500 N-m number of caliper brakes on the wheel = 3 number of pads on each caliper brake = 2 coeffi cient of friction = 0.35 average pressure on pad = 2 MPa The ratio of pad radius to the distance of the pad center from axis of disk is 0.2 . Calculate the radius of the pad.	03 04 07
Q.5	(a) (b) (c)	Calculate the minimum stopping distance for a vehicle travelling at 60 km/hr with a deceleration equal to the acceleration due to gravity. Explain tractive effort. The following data is given for the piston of a four-stroke diesel engine: Cylinder bore = 250 mm Maximum gas pressure = 4 MPa Allowable bearing pressure for skirt = 0.4 MPa Ratio of side thrust on liner to maximum gas load on piston = 0.1 Width of top land = 45 mm Width of ring grooves = 6 mm Total number of piston rings = 4 Axial thickness of piston rings = 7 mm Calculate: (i) length of the skirt; and (ii) length of the piston.	03 04 07
Q.5	(a) (b) (c)	Define the advantages and disadvantages of wet liner and Dry liner in IC Engines. Explain the desirable properties of cylinder materials. Determine the dimensions of cross-section of the connecting rod for a diesel engine with the following data: Cylinder bore = 100 mm Length of connecting rod = 350 mm Maximum gas pressure = 4 MPa Factor of safety = 6	03 04 07
