Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII (NEW) EXAMINATION - WINTER 2023

Subject Code:3170203 Date:01-12-2023

Subject Name: Vehicle Dynamics

Time: 10:30 AM TO 01:00 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

	7.	Simple and non-programmable scientific calculators are anowed.	MARKS
Q.1	(a)	Explain the boundary layer in context with vehicle aerodynamic.	03
	(b)	Explain Under steer and Over steer	04
	(c)	Derive the dynamic axle loading equation for vehicle.	07
Q.2	(a)	Explain Braking Efficiency and Brakes factor	03
	(b)	Explain the effect of slip angle during cornering of vehicle.	04
	(c)	Draw and explain vehicle's fixed coordinate system.	07
		OR	
	(c)	Explain motion of vehicle in earth Fixed Co Ordinate System with suitable example	07
Q.3	(a)	Explain Anti-Lock Braking System.	03
	(b)	Explain Tire Cornering forces with Equations.	04
	(c)	Explain the brake factor and its important with neat sketch	07
		OR	
Q.3	(a)	Enlist the types of Suspension. write a short note on anyone of them.	03
	(b)	Explain the resisting forces acting on motorcycle body	04
	(c)	Explain the method of roll center analysis for independent suspension system	07
Q.4	(a)	Define: (i) Pitching moment, (ii) Camber angle, (iii) Drag force	03
	(b)	Explain Factors affecting rolling resistance	04
	(c)	Explain Quasi-static Rollover of a suspended Vehicle.	07
		OR	
Q.4	(a)	Justify importance of trail.	03
	(b)	Explain the phenomenon of bump steer.	04
	(c)	Explain the tire axis system in detail with neat labeled sketch.	07
Q.5	(a)	Explain Tractive Properties for Tyre.	03
	(b)	Write a Short Note on aerodynamic Drag and Force.	04
	(c)	Explain steering system forces and moments	07
		OR	
Q.5	(a)	Define active suspension.	03
	(b)	Introduce Front & Rear suspensions of Motorcycle.	04
	(c)	Derive the expression for anti-pitch geometry with necessary assumptions.	07
