Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-V (NEW) EXAMINATION - WINTER 2023

Sub	ject	Code:3150612 Date:11-1	2-2023
Sub	ject	Name: Design of Structures	
	•	0:30 AM TO 01:00 PM Total Mar	:ks:70
	ructio		
	1.	Attempt all questions.	
	2.	Make suitable assumptions wherever necessary.	
	3.	Figures to the right indicate full marks.	
	4.	1 0	
		Use of IS:456(2000), IS:800 (2007) and Steel table is permitted.	_
	6.	Assume M20 grade concrete and Fe415 steel for RCC element, if not provide	ed.
			MARKS
Q.1	(a)	Define the following terms:	03
V.1	()	Clear Cover, Effective Cover and Partial Safety Factor.	
	(b)	Discuss the advantages of structural steel.	04
	(c)	Explain briefly about Under reinforced section, Balanced section and	07
	()	Over reinforced section.	
Q.2	(a)	Discuss the assumptions made in the limit state design of reinforced	03
		concrete compression members.	
	(b)	An R. C. C. beam of size 350 wide and 550mm deep is reinforced by	04
		tension bars as 5nos. of 25mm dia. and compression bars as 3nos. of	
		20mm dia. Calculate the moment of resistance of beam if the clear cover	
		is 25mm on both the sides.	
	(c)	Explain one way shear check and two way shear check for footing.	07
		OR	
	(c)	Discuss the various philosophies of the design in R. C. C. structures.	07
		Also discuss the merits and demerits of each.	
Q.3	(a)	Give functions of following	03
		(i) Stirrups in a beam (ii) Ties in a column	
		(iii) Distribution reinforcement in a slab	
	(b)	A 4m high column is effectively held in position at both ends and	04
	, ,	restrained against rotation at one ends. Its Diameter is resisted to 40 cm.	
		Calculate the reinforcement if it is required to carry a factored axial load	
		1600 kN.	
	(c)	Design an Isolated square footing for square column of 450 mm x 450	07
		mm For axial load of 840 kN. Take SBC of soil 100kN/m ² . Draw all	
		necessary sketches.	
		0.70	

OR

(a) Sketch the details of slab base footing

Q.3

- (b) Determine Bolt value of 20 mm diameter bolt connecting 10 mm plates in:
 a) Single Shear and b) Double Shear
 Grade of bolt is 4.6 & Grade of plate is 410 MPa.
 (c) Design a simply supported beam of span 5 m subjected to working dead
 07
 - (c) Design a simply supported beam of span 5 m subjected to working dead load of 24kN/m and Live load of 13 kN/m. The beam is laterally unrestrained. Check for deflection is not required

03

Q.4	(a)	Differentiate between one-way slab and two-way slab.	03
_	(b)	State the advantage and disadvantage of bolted and welded connections.	04
	(c)	An ISA 150x75x10 mm is subjected to axial tensile force of 190 kN	07
		connected by its longer leg to 10 mm thick gusset plate. Design welded	
		connection for shop welding.	
		OR	
Q.4	(a)	Explain the lap and butt joint with neat sketches.	03
	(b)	Explain with neat sketches about "Lacing" and "Battening"	04
	(c)	Design a simply supported one way slab 3m x 7m supported on 300 mm	07
	. ,	wide beams. The slab carries a 2 kN/m ² live load and 1.2 kN/m ² finish	
		load. Check criteria for deflection and development length.	
Q.5	(a)	Give Codal provisions for development length, Bond Stress, Anchoring	03
Q.D	(4)	reinforcement.	00
	(b)	Explain factors affecting the strength of the tension member.	04
	(c)	Determine the design axial compressive load on the given column	07
		section ISMB 450 @ 72.4 kg/m having length 4 m between the	
		intersections and pined at the ends. Take fy 250 MPa.	
		OR	
Q.5	(a)	Sketch the typical bolted connection using lug angle.	03
	(b)	Sketch reinforcement detail for a simply supported one-way square slab	04
		showing all required details including torsion reinforcement.	
	(c)	Design a slab base for a built up column composed of 2 channel sections	07
		ISMC 300 placed back to back at clear spacing 200 mm Axial factored	
		load on column is 850 KN and SBC of soil is 175 KN/m ² .	
