GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-V (NEW) EXAMINATION – WINTER 2024

Subject Code:3150615 Date:05-12-2024

Subject Name:Soil Mechanics

Time:10:30 AM TO 01:00 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

Q.1	(a)	Explain the terms 'inside clearance' and 'outside clearance' as applied to a sampler.	Marks 03
	(b)	Explain the principle of the direct shear test. What are the advantages of this test? What are its limitations?	04
	(c)	Use Boussinesq's theory and compute vertical stress values on a vertical plane located at radial distance of 1m away from a 200 kN point load acting at ground level. Compute the vertical stress values at 2 m, 3 m & 4 m depth.	07
Q.2	(a)	What are the criteria for deciding the depth of foundations?	03
	(b)	Explain Fellenius method for locating centre of slip circle.	04
	(c)	A long natural slope in a C- ϕ soil is inclined at 12° to the horizontal. The water table is at the surface and the seepage is parallel to the slope. If a plane slip has developed at a depth of 4 m, determine the factor of safety. Take C = 8 kN/m², ϕ = 22° and γ_{sat} =19 kN/m³.	07

OR

(c) Determine the area ratio for the following soil samples and comment on the nature of samples obtained in each of the samples.

nature of samples obtained in each of the samples.						
Soil sampler	Outer diameter (mm)	Inner diameter (mm)				
(a) Core cutter	165	150				
(b) Split barrel	51	35				
(c) Seamless tube	51	48				

- Q.3 (a) What are the assumptions made in Terzaghi's analysis of bearing capacity of a strip footing?
 - (b) Explain the concept of 'Pressure Bulb' in soils.
 - (c) A clay specimen has unconfined strength of 100 kPa & is subjected to UU Triaxial test under a cell pressure of 100 kPa. Find its axial stress at failure.

OR

- Q.3 (a) Explain the basic difference in the bearing capacity computation of shallow and deep foundations.
 - (b) Describe with a neat sketch how will you carry out the wash boring method of soil exploration.

	(c)	In an unconfined compression test, a cylindrical sample of clay 8 cm long and 4 cm in dia., fails under a load of 80 N. Evaluate shearing resistance if failure occurs at 10% strain.	07
Q.4	(a)	Explain unconfined compression test.	03
	(b)	Derive the principle of construction of Newmark's chart.	04
	(c)	Determine the safe bearing capacity of a strip footing 1.5 m wide & 1.5 m depth, resting on a deep sand bed, consider $\gamma = 18 \text{ kN/m}^3$, and bearing capacity factors, $N_C = 35.5$, $N_q = 23.2$, $N_\gamma = 22$ corresponding to $\phi = 38^\circ$ and factor of safety = 3. Use Terzaghi's equation.	07
		OR	
Q.4	(a)	Explain in brief about any two types of geosynthetic.	03
	(b)	Explain friction circle method of analysing the stability of slopes.	04
	(c)	Compute the safe bearing capacity of a square footing 2.0 m \times 2.0 m, located at a depth of 1.5 m below the ground level in a soil of unit weight 19 kN/m ³ , ϕ = 20°, N _c = 17.7, N _q =7.4, N _γ = 5.0. Take factor of safety = 3. The water table is very deep. If the water table touches the base of the footing, find the reduction in safe bearing capacity. Use Terzaghi's equation.	07
Q.5	(a)	Discuss the various factors that affect the bearing capacity of a shallow footing.	03
	(b)	What are the different applications of geotextile, and geocell.	04
	(c)	A 60 cm diameter pile is driven into a homogeneous clay having, $C = 50$ kPa, $\alpha = 0.7$. If the embedded length is 10 m, estimate the safe load. Take FOS = 2, and $N_C = 9$.	07
		OR	
Q.5	(a)	Explain about electrical resistivity method.	03
	(b)	Explain Engineering News formula.	04
	(c)	A concrete pile of 45 cm diameter was driven into sand of loose to medium density to a depth of 15 m. The following properties are known: Average unit weight of soil along the length of the pile, $\bar{\gamma}=17.5$ kN/m³, average $\phi=30^\circ$, average $\overline{K_S}=1.0$ and $\delta=0.750$. Calculate the allowable load with FS = 2.5. Take $N_q=16.5$.	07
