GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-V (NEW) EXAMINATION – WINTER 2024

Subject Code:3150614 Date:05-12-2024

Subject Name:Structural analysis-II

Time:10:30 AM TO 01:00 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

Q.1	(a)	Write the statement and proof of Castingliano's 1 st theorem.	Marks 03
Ų.1	(b)	Explain any four terms:	03
	(6)	Stiffness, Distribution factor, Carry over factor, Carry over moment, Flexibility.	0-1
	(c)	Using Castigliano's first theorem, calculate deflection at free end of cantilever beam shown in Figure: 1. Take $E = 2 \times 10^5 \text{ N/mm}^2$ and size of beam as $230 \times 300 \text{ mm}$	07
Q.2	(a)	Write assumptions made in slope deflection method.	03
	(b)	Write the differences between statically determinate and indeterminate structures.	04
	(c)	Derive Slope Deflection Equation using fundamentals with usual notations. OR	07
	(c)	Draw SFD and BMD diagram for a beam shown in Figure: 2 using Slope and deflection method.	07
Q.3	(a)	Draw Restrained structure and Released structure for a propped cantilever beam.	03
	(b)	Derive Shear equations for portal frames with side sway.	04
	(c)	Analyze and Draw the SFD & BMD for the beam shown in Figure: 2 by Moment distribution method	07
		OR	
Q.3	(a)	Differentiate: Stiffness method and Flexibility method. Which method is suitable for general computer programming? Why?	03
	(b)	Write a short note on Castingliano's 2 nd Theorem and discuss its uses.	04
	(c)	Analyze the beam shown in the Figure: 3 using moment distribution method and draw BMD.	07
Q.4	(a)	Write assumptions made is cantilever method of approximate analysis.	03
	(b)	Determine the reactions at the supports for a propped cantilever beam of length '1' subjected to a UDL 'w' throughout its span using principle of minimum strain energy.	04
	(c)	Analyze a propped cantilever beam subjected to a UDL throughout its span by Flexibility method	07
		OR	
Q.4	(a)	Define the influence line diagram and give statement of Muller Breslau principle.	03
	(b)	Calculate the central deflection for a simply supported beam of length 'l' subjected to a concentrated load of 'w' at centre on its span using Castingliano's 1st Theorem.	04

	(c)	Formulate Flexibility and Stiffness Matrices for a cantilever beam.	07
Q.5	(a) (b)	State the characteristics of stiffness matrix. Draw only Qualitative influence line diagram for following functions of 2 span continuous beam having support reaction RA, RB and RC. The point D is located at center of right span BC (a) Influence line for RC (b) Influence line for RA (c) Influence line for shear at D (d) Influence line for bending moment at D.	03 04
	(c)	Draw ILD for SF and BM at section D, 4 m from A, for a two span continuous beam as shown in Figure: . 4	07
Q.5	(a) (b)	OR State the characteristics of flexibility matrix. A simply supported beam AB has span 6m. Draw influence lines for RA, RB, Vx and Mx for a section X at 2m from left hand support.	03 04
	(c)	Draw influence line diagrams for Va and Vb for a beam shown in Figure: 5	07
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	40 kN/m 70 kN C B 2 m 1 m Figure: 1 30 kN/m 40 kN 20 kN/m	
<i>≸</i>	2 m	1 (2EI) 1 m (EI) 1 m (EI)	
		Figure: 2	
#		30 kN 85 kN/m A B C 3 m Figure: 3	
11.	A	D B C Va Vb 4 m 4 m Figure: 5	