| Seat No.: | Enrolment No.     |
|-----------|-------------------|
| Seat No   | Elifoliticiti No. |

## GUJARAT TECHNOLOGICAL UNIVERSITY

|            |            | BE - SEMESTER-V (NEW) EXAMINATION - WINTER 2023                                                                                                         |        |
|------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Subj       | ect (      | Code:3150614 Date:13-1                                                                                                                                  | 2-2023 |
| Subj       | ect l      | Name:Structural analysis-II                                                                                                                             |        |
| •          |            | :30 AM TO 01:00 PM Total Mar                                                                                                                            | ·ks:70 |
| Instru     |            |                                                                                                                                                         | 110.70 |
| insti u    |            | Attempt all questions.                                                                                                                                  |        |
|            |            | Make suitable assumptions wherever necessary.                                                                                                           |        |
|            |            | Figures to the right indicate full marks.                                                                                                               |        |
|            | 4.         | Simple and non-programmable scientific calculators are allowed.                                                                                         |        |
|            |            |                                                                                                                                                         | MARKS  |
| <b>Q.1</b> | (a)        | Explain the terms degree of static and kinematic indeterminacy.                                                                                         | 03     |
|            | <b>(b)</b> | Write characteristics of stiffness matrix.                                                                                                              | 04     |
|            | (c)        | Analyze the continuous beam shown in <b>Figure 1</b> by slope deflection                                                                                | 07     |
|            |            | method and draw bending moment diagram.                                                                                                                 |        |
| Q.2        | (a)        | What is influence line diagram? What is the use of influence line diagram?                                                                              | 03     |
|            | <b>(b)</b> | Derive shear equation in the case of analyzing the portal frame with side sway.                                                                         | 04     |
|            | (c)        | •                                                                                                                                                       | 07     |
|            | (c)        | Draw the influence line diagram for reaction at B in the continuous beam                                                                                | 07     |
|            | (C)        | shown in <b>Figure 3</b> . EI is constant throughout.                                                                                                   | 07     |
| Q.3        | (a)        | State the assumptions made in deriving slope-deflection equations.                                                                                      | 03     |
|            | <b>(b)</b> | Calculate the central deflection for a simply supported beam of length 'l' subjected to a udl 'w' throughout its span using Castingliano's 1st theorem. | 04     |
|            | (c)        | Analyze the rigid frame shown in <b>Figure 4</b> by moment distribution method.                                                                         | 07     |
|            |            | OR                                                                                                                                                      |        |
| Q.3        | (a)        | Differentiate: Stiffness method and Flexibility method. Which method is suitable for general computer programming?                                      | 03     |
|            | <b>(b)</b> | Derive slope and deflection method equations from first fundamentals.                                                                                   | 04     |
|            | (c)        | Calculate the fixed end moment for the beam shown in <b>Figure 5</b> using Castigliano's 2 <sup>nd</sup> theorem.                                       | 07     |
| <b>Q.4</b> | (a)        | Define: Sway. What are the causes for sway in portal frames?                                                                                            | 03     |
| -          | <b>(b)</b> | Enlist steps of unit load method to analyze indeterminate structures.                                                                                   | 04     |
|            | <b>(c)</b> | For a mild steel bent of 200 mm diameter as shown in <b>Figure 6</b> , find the                                                                         | 07     |
|            |            | vertical deflection at D. $E = 2 \times 10^5 \text{ N/mm}^2$ .<br><b>OR</b>                                                                             |        |
| <b>Q.4</b> | (a)        | Write assumptions made in slope deflection method.                                                                                                      | 03     |
|            | (b)        | Explain characteristics of influence line diagram for statically                                                                                        | 04     |
|            | ( ' )      | indeterminate structures.                                                                                                                               |        |
|            | (c)        | A steel bar bent to the shape as shown in <b>Figure 7</b> is fixed as A and carries a vertical load W at C. Calculate the vertical deflection of C. EI  | 07     |
|            |            | is constant throughout.                                                                                                                                 |        |
| Q.5        | (a)        | Enlist various categories of framed structures.                                                                                                         | 03     |

(b) State and explain Muller-Breslau principle.

04

(c) Analyze the continuous beam shown in **Figure 8** by moment distribution method and draw bending moment diagram.

OR

- **Q.5** (a) Draw restrained structure and released structure for a propped cantilever beam.
  - (b) Explain the terms:
    (a) Carryover moment, (b) Carryover factor, (c) Flexural stiffness of a member, (d) Distribution factor
  - (c) Analyze the propped cantilever beam shown in **Figure 9** by flexibility method.



03