GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering - SEMESTER - V EXAMINATION - SUMMER 2025

Subject Code: 3150614 Date: 20-05-2025

Subject Name: Structural analysis-II

Time:02:30 PM TO 05:00 PM Total Marks: 70

Instructions

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

		Marks
Q.1 (a)	Draw restrained structure and released structure for a propped cantilever beam.	03
(b)	Derive relation between stiffness and flexibility.	04
(c)	Analyze the continuous beam shown in Figure by slope deflection method and draw bending moment diagram.	07

- Q.2 (a) Write characteristics of stiffness matrix.
 - (b) Enlist steps of unit load method to analyze indeterminate structures. 04

03

(c) A distributed load of 80 kN per metre run away occupy any position on the girder as shown in **Figure.** Find the maximum positive and negative shear force at the section marked C.

(c) Analyze the frame shown in **Figure** by moment distribution method and draw bending moment diagram.

Q.3 (a) Explain fictitious load method used to solve deflection problems.

6 m

03

04

(b) Calculate the central deflection for a simply supported beam of length '1' subjected to a udl 'w' throughout its span using Castingliano's 1st theorem.

07

(c) Draw the influence line diagram for reaction at B in the continuous beam shown in **Figure**. EI is constant throughout.

5 m

(a) For a cantilever beam, show that stiffness and flexibility matrices are reciprocal to each other.

OR

03

(b) Derive shear equation in the case of analyzing the portal frame with side sway.

04

(c) Calculate the fixed end moment for the beam shown in **Figure** using Castigliano's 2^{nd} theorem.

07

- Q.4 (a) Explain various types of skeletal structures.
 - (b) State and prove the Castingliano's 1st theorem. 04
 - (c) For a mild steel bent of 200 mm diameter as shown in **Figure**, find the vertical deflection at D. $E = 2 \times 10^5 \text{ N/mm}^2$.

(a) What is influence line diagram? What is the use of it?

03

03

- **(b)** Draw influence line diagrams for support reactions of a simply supported beam.
- 04

07

(c) A steel bar bent to the shape as shown in **Figure** is fixed at A and carries a vertical load W at C. Calculate the vertical deflection at C. EI is constant throughout

- **Q.5** (a) Differentiate between Stiffness method and Flexibility method. Which method is suitable for general computer programming?

03

(b) What is a portal frame? Discuss the causes of sway in a portal frame.

- **04**
- (c) For a beam shown in **Figure**, find the moments and the reactions at the supports. Draw bending moment and shear force diagram for the beam.

07

(a) State the assumptions made in deriving slope-deflection equations.

03

(b) Explain Muller-Breslau principle.

04

(c) Analyze the beam shown in **Figure** by flexibility method.

07
