GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-V (NEW) EXAMINATION – SUMMER 2024
Subject Code: 3150614
Date: 23-05-2024

3	ubje	Ct Code:3150014 Date:25-05-2024	
S	ubje	ct Name:Structural analysis-II	
	•	02:30 PM TO 05:00 PM Total Marks:70	
	struct		
		 Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Simple and non-programmable scientific calculators are allowed. 	
Q.1	(a) (b)	Calculate SI and KI for the beam shown in Fig.1. Formulate the stiffness matrix for the beam shown in Fig.1. Also write the stiffness equation.	03 04
	(c)	Solve the stiffness equation and evaluate the reactions and end moments for the beam shown in Fig.1. Draw SFD and BMD for the beam.	07
Q.2	(a) (b)	Calculate SI and KI for the frame shown in Fig.2. Formulate the stiffness matrix for the frame shown in Fig.2. Also write the stiffness equation.	03 04
	(c)	Solve the stiffness equation and evaluate the reactions and end moments for the frame shown in Fig.2. Draw SFD and BMD for the frame. OR	07
	(c)	With appropriate illustration show that $S = F^{-1}$.	07
Q.3	(a)	Derive equation for calculation of slope at A for the beam shown in Fig.3, using Castigliano's first theorem. Consider $E = 2 \times 10^5 \text{ N/mm}^2$ and $E = 3 \times 10^8 \text{ mm}^4$.	03
	(b)	Solve the equation written in Q.3(a) and calculate slope at A for the beam shown in Fig.3 using Catigliano's first theorem. Consider $E = 2 \times 10^5 \text{ N/mm}^2$ and $E = 3 \times 10^8 \text{ mm}^4$.	04
	(c)	Calculate deflection at C the beam shown in Fig.3 using Catigliano's first theorem. Consider $E=2 \times 10^5 \text{ N/mm}^2$ and $I=3 \times 10^8 \text{ mm}^4$. OR	07
Q.3	(a)	Derive the equation for calculation of horizontal deflection at B for the frame shown in Fig. 4, using Castiglino's first theorem. Consider $E=2 \times 10^5 \text{ N/mm}^2$ and $I=3 \times 10^8 \text{ mm}^4$.	03
	(b)	Solve the equation written in Q.3(a) OR and calculate horizontal deflection at B for the frame shown in Fig.4 using Castiglino's first theorem. Consider $E=2 \times 10^5 \text{ N/mm}^2$ and $I=3 \times 10^8 \text{ mm}^4$.	04
	(c)	Calculate vertical deflection at B for the frame shown in Fig.4 using Castiglino's first theorem. Consider $E=2 \times 10^5 \text{ N/mm}^2$ and $I=3 \times 10^8 \text{ mm}^4$.	07
Q.4	(a) (b)	What is influence line diagram? How it is useful in structural design of bridges? A udl of 50 kN/m, 5 m long, crosses a girder of 25 m simply supported span. Calculate the maximum shear force and bending moment at a section 6 m from left hand support.	03 04
	(c)	Draw influence line diagrams for the RA, RB, RC FX and MX for the beam shown in Fig.5. OR	07
Q.4	(a)	Find SI and KI for the two span continuous beam shown in Fig.6. Draw released	03
דיּץ	(a)	structure for influence line diagram for RA.	U

	(b)	Draw influence line diagram for RA for the two span continuous beam shown in	04
		Fig.6. Calculate ordinates of ILD at 1 m interval.	
	(c)	Draw influence line diagram for MB for the two span continuous beam shown in	07
		Fig.6. Calculate ordinates of ILD at 1 m interval.	
Q.5	(a)	Differentiate between slope deflection method and moment distribution method for analysis of plane frame.	03
	(b)	Write slope deflection equation for the frame shown in Fig.7.	04
	(c)	Solve the slope deflection equations and draw BMD for the frame shown in Fig. 7.	07
		OR	
Q.5	(a)	Write steps for analysis of plane frame with sway by moment distribution method.	03
	(b)	Write the slope deflection equations for the beam shown in Fig.8.	04
	(c)	Solve the slope deflection equations and draw BMD for the beam shown in Fig. 8.	07

