GUJARAT TECHNOLOGICAL UNIVERSITY **BE- SEMESTER-VI (NEW) EXAMINATION – WINTER 2024** Subject Code:3160616 Date:09-12-2024 **Subject Name:Foundation Engineering** Time:02:30 PM TO 05:00 PM Total Marks:70 ## **Instructions:** - 1. Attempt all questions. - 2. Make suitable assumptions wherever necessary. - 3. Figures to the right indicate full marks. - 4. Simple and non-programmable scientific calculators are allowed. | | | | MARKS | |------------|-------------------|--|----------------| | Q.1 | (a)
(b) | Provide information obtained in Reconnaissance survey.
Enlist directs methods of exploration and explain Pits and Trench in brief. | 03
04 | | | (c) | Illustrate wash boring method of exploration with neat sketch. | 07 | | Q.2 | (a)
(b)
(c) | Explain Dilatancy and Overburden pressure for SPT test.
State the measures to be taken for treatment of expansive soil.
Enlist different conditions for Combined footing and discus any one in detail. | 03
04
07 | | | | OR | | | | (c) | Describe Grillage foundation. | 07 | | Q.3 | (a) | Enlist different foundation for Expansive soil and describe anyone. | 03 | | | (b) | Differentiate between Counterfort and Cantilever type of retaining wall. | 04 | | | (c) | Describe Geogrids with their application. OR | 07 | | Q.3 | (a) | Enlist minerals available in clayey soil and describe Montmorillonite. | 03 | | | (b) | Enlist various forces acting on Gravity type retaining wall with its effect on stability. | 04 | | | (c) | Describe Geomembrane with its application. | 07 | | Q.4 | (a) | State the Skempton's theory for cohesive soil. | 03 | | | (b) | Differentiate between local and punching shear failure. | 04 | | | (c) | A 1.5 m wide strip footing is placed at a depth of 1.2m in cohesionless soil. The water table is at 1.2 m. Determine safe bearing capacity with FOS 3. Take $\gamma = 17 \text{ kN/m}^3$, $\gamma_{sat} = 19 \text{ kN/m}^3$, and $\emptyset = 30^\circ$, $N_c = 37.2$, $N_q = 22.5$, $N_\gamma = 19.7$. | 07 | | Q.4 | (a) | State the bearing capacity equation given by IS 6403-1981, with details of each term. | 03 | | | (b) | Enlist the assumptions made by Terzaghi in bearing capacity | 04 | | | (,,, | theory. | | | | (c) | Plate load tests were conducted in $c - \emptyset$ soil, on plates of two different sizes and following results were obtained. Find the size of square footing to carry a load of 800 kN. | 07 | | | | Load Size Settlement | | | | | 40 kN 0.3 x 0.3 m 25 mm | | | | | 100 kN 0.6 x 0.6 m 25 mm | | | Q.5 | (a) | Describe Displacement and Non-displacement Pile. | 03 | |-----|------------|---|----| | | (b) | Differentiate between End bearing and Friction Pile. | 04 | | | (c) | A group of 3 X 3 piles 10 m long, and 300 mm diameter is used | 07 | | | | as foundation. The soil is having cohesion 70 kN/m ² , adhesion | | | | | factor 0.75. The spacing among the piles 800 mm. Calculate safe | | | | | load of pile group with FOS 3. | | | | | OR | | | Q.5 | (a) | State the objectives of Sheet Pile. | 03 | | | (b) | Describe Under- Reamed pile. | 04 | | | (c) | A 15 m long 350 mm diameter pile is placed in dense sand. | 07 | | | () | Determine the load carrying capacity of pile with FOS 3. Take | | | | | Take $\gamma = 17 \text{ kN/m}^3$, and $\emptyset = 40^\circ$, $N_q = 135$, $K = 2.0$, $\tan \delta = 0.57$. | | | | | Take $D_c = 20B$. | | | | | | | *****