GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-VI (NEW) EXAMINATION – WINTER 2024

	-	Code:3160618 Date:05-12-2 Name:Open Channel flow	024
Time:02:30 PM TO 05:00 PM Instructions: Total Marks			
	1. 2. 3.	Attempt all questions.	
Q.1	(a)	Show that for a very wide rectangular channel the hydraulic radius is equal to the depth of flow in the channel.	Marks 03
	(b)	Draw definition sketch to derive the equilibrium equation: $\tau = w RS_0$ for uniform steady flow.	04
	(c)	Discuss the practical utility and application of hydraulic jump.	07
Q.2	(a)	Draw a definition sketch to show hydraulic grade line and energy line to show the difference between pipe flow and open channel flow.	03
	(b)	Show that for a rectangular channel the critical depth $y_{c} = (\frac{q^2}{q})^{0.333}$. The	04
	(c)	terms have usual meaning. Water flows in a rectangular channel 1 meter wide with 0.1 meter depth of flow, average velocity 1.5 meter/s and viscosity 10 ⁻⁶ meter square per second, find the state of flow.	07
	(c)	OR For a constant specific energy 2.4 joules per newton calculate the maximum discharge that may occur in a rectangular channel 4 meter wide.	07
Q.3	(a)	Explain Froude number as a ratio of flow velocity to celerity so give reasons why ripples do not travel upstream in a supercritical flow.	03
	(b)	State the assumptions made in the derivation of dynamic equation of gradually varied flow profile.	04
	(c)	Describe the Shields curve and discuss its salient features. OR	07
Q.3	(a)	For an open channel steady gradually varied flow draw a control volume show the forces acting on this control volume to apply the momentum equation across the two sections.	03
	(b)	Use Manning's equation to explain the terms normal flow and normal discharge for a uniform flow.	04
	(c)	Cite the practical situations in which M ₁ and M ₂ type of profiles occur and explain their characteristics using the dynamic equation of the gradually varied flow	07

(a) Give the physical interpretation and importance of hydraulic radius.

Q.4

03

	(b) (c)	Explain the term section factor for a uniform flow. In a wide rectangular channel other factors remaining constant if the normal depth is increased by 20% find the increase in discharge using Chezy's equation.	04 07
		OR	
Q.4	(a)	Explain grain shear stress and form shear stress for a mobile boundary channel.	03
	(b)	Explain hydrostatic pressure for channels of large slope and channels of small slope.	04
	(c)	Explain in detail channels of the first and the second kind	07
Q.5	(a)	Use Chezy's equation to explain conveyance of flow in a uniform steady open channel flow.	03
	(b)	Draw hydrostatic pressure diagram for a surface concave upwards and having a normal acceleration "a _n "	04
	(c)	A sewer pipe is proposed to be laid on a slope of 1 in 3000 and is required to carry a discharge of 2 cumec. What size of the pipe should be used if you plan it to flow half full? Take Manning's $n = 0.014$.	07
		OR	
Q.5	(a)	Give the reasons why positive surges have a stable profile and preserved shape while negative surge have an unstable profile.	03
	(b)	Draw the definition sketch giving causes of occurrence for (i) positive surge moving upstream and a positive surge moving downstream (ii) negative surge moving upstream and negative surge moving downstream.	04
	(c)	Use specific energy diagram to explain the variation of upstream and downstream depth of flow for a rectangular channel due to provision of hump (i) when approaching depth is sub-critical (ii) when approaching depth is supercritical	07
