GUJARAT TECHNOLOGICAL UNIVERSITY

		BE- SEMESTER-VII (NEW) EXAMINATION – WINTER 2024	
S	Subje	ect Code:3170620 Date:16-12-2024	
	•	ect Name: Computational Geotechnics	
	•	:10:30 AM TO 01:00 PM Total Marks:70	
		etions:	
_	iioti u	1. Attempt all questions.	
		 Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 	
		4. Simple and non-programmable scientific calculators are allowed.	
Q.1	(a)	Explain the concept of Finite Element Method? Give its applications in Geotechnical engineering.	03
	(b)	Differentiate between discrete modeling and continuum modeling.	04
	(c)	Find a real root of $\cos x - 3x + 5 = 0$, correct to four decimal places using the false position method	07
Q.2	(a)	Briefly explain different linear and nonlinear analysis methods.	03
	(b)	Explain Bisection method with suitable example.	04
	(c)	Use the Runge-Kutta method of order two to integrate $dy/dx = \sin y$ with $y(0) = 1$ from	07
		x = 0 to 0.5 in steps of $h = 0.1$. Keep four decimal places in the calculations.	
	(a)	OR Using the Runge-Kutta method of order four and with $h = 0.2$ to obtain an approximate	07
	(c)	solution of $dy/dt = -2ty^2$, $y(0) = 1$, in the initial $0 \le t \le 1$ with $h = 0.2$. The exact value of y is given by $y = 1/1 + t^2$. Compute the relative error and the percentage relative error.	U7
Q.3	(a)	Briefly explain soil constitutive model	03
	(b)	Differentiate between elastic model and plastic model	04
	(c)	Explain Tri-axial test with neat sketch. Also enlist its limitation.	07
		OR	
Q.3	(a)	Explain the flow through porous media.	03
	(b)	List the assumption made in the theory of 1-D consolidation.	04
	(c)	Explain in detail One-dimensional plasticity theory for understandingthe behavior of soil.	07
Q.4	(a)	Briefly explain the applications of numerical solution	03
	(b)	Explain Newton-Raphson method with suitable example	04
	(c)	Differentiate between Tresca failure theory and Von Mises failure theory for soil?	07
. .		OR	0.2
Q.4	(a)	Explain Taylor's series method	03
	(b)	Explain Jacobi's methodwith suitable example	04
	(c)	Explain theory of Lade-Duncan criterion for earth pressure coefficient.	07
Q.5	(a)	Explain the ordinary and partial differential equations with suitable example	03
	(b)	Explain compression index (Cc) and Swelling index (Cs)	04
	(c)	Explain consolidation mechanism through spring analogy theory. OR	07
Q.5	(a)	What are Disichlet conditions and Neumann conditions?	03
	(b)	Write a short note on 'Cam clay'	04
	(c)	Explain classical plasticity. Explain general framework of it.	07
