GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII (NEW) EXAMINATION – WINTER 2022			
Subject Code:3170620 Date:12-03			-2023
Subj	ect]	Name:Computational Geotechnics	
Time: 10:30 AM TO 01:00 PM Total Marks			ks:70
Instru	ction	ns:	
		Attempt all questions.	
	2.	Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
	3. 4.	Simple and non-programmable scientific calculators are allowed.	
	••	Simple and non-programmable betentific calculators are anowed.	Marks
Q.1	(a)	Briefly explain different linear and nonlinear analysis methods.	03
Ų.1	(a) (b)	• •	03
	(c)	-	07
	(C)	10x+y+z=12	07
		2x+10y+z=13	
		2x+2y+10z=14.	
		·	
Q.2	(a)	Enlist different ODE and PDE method.	03
	(a) (b)		03
	(c)	Use second order Runge-Kutta method to find $y(0.2)$ with h=0.1, given	07
	(C)	that $dy/dx = x-y^2$, $y(0)=1$.	07
		OR	
	(c)	Use fourth order Runge-Kutta method to find y(1.1) with h=0.05, given	07
		that $dydx = x-y$, $y(1)=1$.	
Q.3	(a)	Differentiate between discrete modeling versus continuum modeling.	03
	(b)	Explain application of FEM for geotechnical engineering.	04
	(c)	Explain One-dimensional (1D) plasticity theory for understanding the soil	07
		behavior.	
0.1	()	OR	0.2
Q.3	(a)	Briefly explain discrete element method (DEM).	03
	(b) (c)	Briefly explain Drucker-Prager theory. Explain Mohr-Coulomb theory.	04 07
	(0)	Explain Moni-Couloino dicory.	07
Q.4	(a)	Explain Mohr Coulomb theory of shear strength.	03
	(b)		04
	(c)	Explain classical plasticity. Explain general framework of it.	07
		OR	
Q.4	(a)	Explain the importance of initial boundary value problem.	03
	(b)	Differentiate between elastic model and plastic model.	04
	(c)	Explain theory of Lade-Duncan criterion for earth pressure coefficient.	07
<u> </u>	, .		
Q.5	(a)	List the assumption made in the theory of 1-D consolidation.	03
	(b)	· · ·	04
	(c)	Explain theory of Terzaghi for one dimensional consolidation. OR	07
Q.5	(a)	Explain concept of consolidation.	03
Ų.S	(a) (b)	-	03
	(c)	Explain Tri-axial test with neat sketch. Also enlist its limitation	07
