Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE – SEMESTER- VII EXAMINATION-SUMMER 2023

Subject Code: 3170620 Date: 19/06/2023

Subject Name: Computational Geotechnics

Time: 10:30 AM TO 01:00 PM Total Marks: 70

Instructions:

1. Attempt all questions.

2. Make suitable assumptions wherever necessary.

3. Figures to the right indicate full marks.

4. Simple and non-programmable scientific calculators are allowed.

Q.1	(a)	Enlist various linear and non-linear methods.	03
		Explain Newton-Raphson method with suitable example.	
*	(b)	Explain concept of Finite Element method. Give	04
		its applications in geotechnical engineering.	
	(c)	Solve the following system by Gauss Seidal method correct up to 3 decimal places. (Use $X_0=3$, $Y_0=3$ & $Z_0=2$) $2x + y + 54z = 110$ $27x + 6y - z = 85$	07
			10/2
Q.2	(a)	Find negative roots of $x^3-7x + 3 = 0$ by Bisection method up to 3 step.	03
	(b)	Explain False Position method with suitable example.	04
	(c)	Given that $y=1.3$ when $x = 1$ and $y' = 3x+y$. Use second order Runge-Kutta Method to approximate y when $x = 1.2$, use step size 0.1.	07
		OR	- 469275
	(c)	Use fourth order Runge-Kutta method to find $y(1.1)$ with h=0.05, given that $dy/dx = x - y$, $y(1)=1$.	07
Q.3	(a)	Give a detail note on DEM for understanding of soil behavior.	03
	(b)	Explain following terms: 1. Angle of internal friction 2. Cohesion of soil particle 3. Shear strength of soil 4. Pore water pressure	04
	(c)	Explain earth pressure coefficient by help of the	07
	RA CHIEF	theory of Lade-Duncan criterion.	
		OR	10000
Q.3	(a)	What are Dirichlet and Neumann conditions?	03
	(b)	Give difference between discrete element method and Finite Element Method.	04
	(c)	Describe Mohr- Coulomb's strength theory.	07

Q.4	(a)	Give difference between discrete modeling versus continuum modeling.	03
	(b)	Give the importance of boundary value problems in geotechnical engineering.	04
•	(c)	What is classical plasticity? Explain general framework of classical plasticity.	07
	4:-4:	OR	
Q.4	(a)	Explain basic concept of discrete modeling.	03
	(b)	Explain concept of Cam clay.	04
	(c)	Explain Modified Mohr Coulomb failure theory for shear strength? Draw strength envelop for various type of soil.	07
Q.5	(a)	Give detail note on one dimensional consolidation.	03
	(b)	Distinguish between Compaction and consolidation.	04
	(c)	Describe the spring analogy theory for primary consolidation. What are its uses?.	07
		OR	010475
Q.5	(a)	Define following terms: 1. Immediate Settlement 2. Primary Consolidation 3. Secondary Consolidation	03
	(b)	Explain concept of Finite Element method. Give its applications in geotechnical engineering.	04
	(c)	Describe with neat sketch Tri-axial test. What are its merits and de-merits?	07
