GUJARAT TECHNOLOGICAL UNIVERSITY RESEMENTED VILEYAMINATION SUMMED 2025

a ,		BE - SEMESTER-VII EXAMINATION - SUMMER 2025			
	•	Code:3170609 Date:16-05	5-2025		
Sul	bject	Name:Irrigation Engineering			
Time:02:30 PM TO 05:00 PM Total Man					
Instructions:					
	1.	Attempt all questions.			
	2.				
	3.	Figures to the right indicate full marks.			
	4.	Simple and non-programmable scientific calculators are allowed.			
			MARKS		
Q.1	(a)	Differentiate between Saturation Capacity and Field Capacity.	03		
V.1	(b)	Elaborate various types of lining and give necessity of canal lining.	04		
	(c)	Discuss the scope of Irrigation Engineering in context to climate change	07		
	(C)	impacts.	07		
		impacts.			
Q.2	(a)	Enumerate the sign of bad drainage condition of an area.	03		
	(b)	Elaborate the benefits that can be accrued from Irrigation projects.	04		
	(c)	Explain the need of Irrigation in India and describe its development in the	07		
	(C)	country.	07		
		OR			
	(c)	Enlist the objectives of command area development? How are these	07		
	(C)	achieved through command area development programmees?	U7		
		achieved through command area development programmees:			
Q.3	(a)	Enumerate the different terms by which duty can be improved.	03		
Q.J	(b)	Explain duty and delta of canal water. Derive the relationship between duty	03		
	(D)	and delta for a given base period.	VŦ		
	(c)	Explain with a neat sketch the layout of a modern canal system, carrying	07		
	(C)	water from a barrage. Discuss as to how the duty of water increases as we	07		
		move downstream from the head of the main canal towards the head of the			
		water course.			
		OR			
Q.3	(a)	Enumerate the different factors affecting duty.	03		
Q.S		Explain the following terms:-	03		
	(D)	a) Cash crops b) Paleo c) Kor watering d) Crop ratio	V -		
	(c)	Explain how will you proceed for determining the field irrigation	07		
	(C)	requirement (FIR) for an important crop like wheat?	U7		
		requirement (1 IK) for an important crop like wheat:			
Q.4	(a)	Distinguish between Suspended load and Bed load	03		
	(b)	An earthen channel with a base 3m wide and side slope 1:1 carries water	03		
	(D)	with a depth of 1m. The bed slope is 1:1600. Estimate the discharge. Take	UT		
		value of N in Manning's formula $N = 0.04$.			
	(c)	Discuss Canal. With the help of a neat sketch, illustrate the classification of	07		
	(C)	canals based on their alignment.	U7		
		OR			
Q.4	(a)	Explain Lacey's concept of initial, final, and permanent regime.	03		
Q.4	(a) (b)	A trapezoidal channel has side slope 1:2 (H:V) and the slope of bed is 1 in	03		
	(0)	1500. The area of the section is 40. Find the dimensions and discharge of	V -1		
		most economical section, if $C = 50$.			
	(c)	Describe Kennedy's theory for the design of irrigation channels in alluvial	07		
	(0)	soil (both cases). What are the limitations of Kennedy's theory?	U I		
		son (oom cases). What are the infinations of Reinledy's theory?			

Q.5	(a)	Explain Balancing depth and how it is determined?	03
	(b)	Elaborate the fundamental difference between Kholsa's theory and Bligh's	04
		Creep theory for seepage below a weir.	
	(c)	Explain brief outline Kholsa's theory on the design of weirs on permeable	07
		foundation. Enumerate the various corrections that are needed in the	
		application of this theory.	
		OR	
Q.5	(a)	Explain brief Khosla's exit gradient concept.	03
	(b)	Distinguish between weir and barrage.	04
	(c)	Elaborate diversion head and indicate the various components of the system.	07
		Briefly indicate the function of each components with a neat sketch.	
