Seat No.:	Enrolment No.
-----------	---------------

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-V (NEW) EXAMINATION - SUMMER 2024

Subject Code: 3150911 Date:31-05-2024

Subject Name: Power System- II

Time:02:30 PM TO 05:00 PM **Total Marks:70**

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

MARK

03

Q.1 (a) Explain advantages of per unit system for power system calculations.

(b) Following three generators are connected in parallel.

04

Generator G1 = 10 MVA, 10 kV, X'' = 10%;

Generator G2 = 12 MVA, 10.6 kV, X'' = 15%;

Generator G3 = 15 MVA, 12 kV, X'' = 20%.

Find the overall equivalent per unit reactance of these the system considering 20 MVA, 11 kV system base.

(c) Three loads are connected in parallel across a 1400 V rms, 60 Hz single phase supply as follows:

07

- Load 1: Inductive load, 125 kVA at 0.28 power factor
- Load 2: Capacitive load, 10 kW and 40 kvar

Load 3: Resistive load of 15 kW.

- (i) Find the total kW, kvar., kVA and the supply power factor
- (ii) Determine the kvar rating of a capacitor (of negligible resistance) and capacitance in µF to improve the power factor to 0.8 lagging.
- (iii) Find the reduction in current after PF improvement.

- 03
- **Q.2** (a) Why synchronous compensators can supply leading as well as lagging vars? (b) Discuss why equivalent π of a long line is preferred to the equivalent T circuit.
- 04
- What is a receiving end power circle diagram? How can it be drawn? What (c) information does it provide?

07

OR

(c) What is nominal circuit? Find ABCD constants for nominal π and nominal T 07 circuits of a transmission line?

03

Q.3(a) What is meant by doubling effect? Explain in brief.

- (b) List various types of faults and write the relative frequency of occurrence of various types of faults.
 - 04 07
- A 4 bus network given in Fig. 1 with following positive, negative and zero sequence (c) reactances:

G1 : $X_0 = 0.06$ pu; $X_1 = X_2 = 0.2$ pu G2: $X_0 = 0.05$ pu; $X_1 = X_2 = 0.3$ pu

T1 & T2 : $X_0 = X_1 = X_2 = 0.2$ pu

Transmission line: $X_0 = 0.08$ pu; $X_1 = X_2 = 0.1$ pu

G1 and G2 neutral ground reactance = 0.3 pu

A fault occurs at bus 4 phase R. Draw sequence impedance diagram and find the fault current in p. u.

OR

		OK	
Q.3	(a)	Why are we interested in computation of sub-transient current rather than steady sustained short-circuit current?	03
	(b)	The Line currents in amperes in phases a, b, c respectively are $500 + j150$, $100 - j600$ and $-300 + j600$ referred to the same reference vector. Find the symmetrical	04
	(c)	components of currents? What is bus impedance matrix? Explain the method of fault calculation using bus impedance matrix.	07
Q.4	(a)	What is the reason for transients during short circuit?	03
	(b)	Prove that positive sequence and negative sequence impedance of fully transposed transmission line are always equal.	04
	(c)	Using appropriate interconnection of sequence networks, derive the equation for a line to line fault in a power system with faults impedance of Z_f .	07
		OR	
0.4	(a)	What are symmetrical components and its need?	03
	(b)	Explain in brief phase shift of symmetrical components in Y- Δ transformer banks.	04
	(c)	Draw the waveforms for fault current for a 3-phase fault on alternator terminals. Explain the sub-transient, transient and steady state reactance. What is their significance in fault calculations?	07
Q.5	(a)	Explain methods to reduce corona loss in brief.	03
	(b)	Why the disruptive critical voltage is less than visual critical voltage.	04
	(c)	Discuss the phenomenon of wave reflection and refraction. Derive expression for reflection and refraction.	07
		OR	
Q.5	(a)	Explain the phenomena of corona.	03
	(b)	State factors affecting corona loss and discuss in brief.	04
	(c)	Find the critical disruptive voltage and critical voltages for local and general corona on a 3-phase overhead transmission line, consisting of three stranded copper conductors spaced 2.5 m apart at the corners of an equilateral triangle. Air temperature and pressure are 21° C and 73 cm Hg respectively. The conductor diameter, irregularity factor and surface factor are 10.4 mm, 0.85, 0.7 and 0.8 respectively.	07
