GUJARAT TECHNOLOGICAL UNIVERSITY **BE - SEMESTER-VI (NEW) EXAMINATION - SUMMER 2024** Subject Code:3160919 Date:24-05-2024 **Subject Name: Electric Drives** Time:10:30 AM TO 01:00 PM Total Marks:70 ## **Instructions:** - 1. Attempt all questions. - 2. Make suitable assumptions wherever necessary. - 3. Figures to the right indicate full marks. - 4. Simple and non-programmable scientific calculators are allowed. | | | | MARKS | | |-----|-------------------|---|----------------|--| | Q.1 | (a)
(b) | Define electric drive and give the classification of electric drive.
Why current sensing is required in electrical drives? Enlist common methods of current sensing. | 03
04 | | | | (c) | Explain the multi quadrant operation of electrical drives with suitable conventions and example. | 07 | | | Q.2 | (a)
(b)
(c) | Briefly explain the steady state analysis of electrical drive. Explain principle of operation of chopper. A 5 KW,220 V shunt motor has an armature resistance of 0.5 Ω and a field resistance of 220 Ω . At no load motor runs at 1000 rpm and draws a current of 5 A. At full load and rated voltage, the current drawn is 15 A and armature reaction caused a drop of 2 % in flux. Calculate: (1) Full load speed (2) Full load torque. | 03
04
07 | | | | | OR | | | | | (c) | A 200 V dc series motor resistance is 0.5 Ω . motor runs at 800 rpm when operating at its full load current of 10 A and magnetic circuit can be assumed unsaturated. what will be the speed if (1) load torque is increased by 50 % (2) Motor current is 5 A. | 07 | | | Q.3 | (a)
(b) | Enlist method employed for speed control of DC series motor.
State & explain the important features of various braking methods of dc motors. | 03
04 | | | | (c) | Explain the dynamic model of dc drive in detail. | 07 | | | OR | | | | | | Q.3 | (a)
(b)
(c) | Enlist method employed for speed control of DC shunt motor.
Explain position control of DC motor.
Derive the expression for average motor current, RMS motor current, torque and average motor voltage for chopper fed d.c. series motor. | 03
04
07 | | | Q.4 | (a)
(b)
(c) | Write down advantages of v/f control other scalar control techniques. Explain different effect of harmonics on induction motor drive. Explain constant air gap flux control scheme for induction motor drives. | 03
04
07 | | | OR | | | | | | Q.4 | (a) | Compare VSI fed Induction motor drive with CSI fed induction motor drive. | 03 | | | | (b) | For Variable frequency control of induction motor explain the following point | 04 | |-----|------------|--|----| | | | 1. For speed below base speed, why (v/f) ratio is maintained constant? | | | | | For speed above base speed, why terminal voltage is maintained constant? | | | | (c) | Explain closed loop speed control of induction motor using slip control scheme. | 07 | | Q.5 | (a) | Write down advantages of squirrel-cage induction motor over dc motors. | 03 | | | (b) | State & explain briefly different methods of speed sensing. | 04 | | | (c) | Explain how static rotor resistance control is achieved during starting of induction motor. | 07 | | | | OR | | | Q.5 | (a) | Discriminate the constant torque and constant power region from torque speed characteristics of 3 phase induction motor. | 03 | | | (b) | Explain space vector modulation technique. | 04 | | | (c) | Explain any one slip power recovery scheme for slip ring induction motor. | 07 | *****